Skip to main content
Log in

Synthetic Antimicrobial Peptides: I. Antimicrobial Activity of Amphiphilic and Nonamphiphilic Cationic Peptides

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Comparative antimicrobial properties of three artificial cationic synthetic antimicrobial peptides (SAMP): (RAhaR)4AhaβA (where R is Arg, Aha is 6-aminohexanoic acid, βA is beta-alanine), (KFF)3K and R9F2 with various amphiphilic properties have been studied relative to pathogenic strains of microorganisms: Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Salmonella enterica, Gram-positive bacteria Staphylococcus aureus, and pathogenic yeast fungus Candida albicans. The selectivity index (SI) values of the peptide preparations were calculated as the ratio of the 50% cytotoxic concentration (TC50) towards eukaryotic host cells to the MIC50 values of the testing antimicrobial peptides. The studied SAMPs appeared to be the most active against the pathogenic yeast fungus C. albicans and the bacterial strains St. aureus and P. aeruginosa. The SI values in these cases exceed 40. Some assumed molecular interactions of the studied SAMPs on the microbial cells have been considered, and possible pathways to increase their antimicrobial activity have been suggested. The proposed SAMPs can serve as a basis for the design and synthesis of new promising synthetic antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aa:

amino acid

AMP:

antimicrobial peptides

MIC50 :

minimum inhibitory concentration, which inhibits the growth of microorganisms by 50%

MTT:

3-(4,5-dimethylthiazsol-2-yl)-2,5-diphenyltetrasolium bromide

SAMP:

synthetic antimicrobial peptides

Aha:

6-aminohexanoic acid

βА:

betaalanine

ESI-MS:

electrospray ionization mass spectrometry

MALDI-TOF MS:

Matrix assisted laser desorption ionizationtime of flight mass spectrometry

SI:

selectivity index

TC50 :

50% cytotoxic concentration

References

  1. Bahar, A.A. and Ren, D., Pharmaceuticals (Basel), 2013, vol. 6, no. 12, pp. 1543–1575.

    Article  CAS  Google Scholar 

  2. Peschel, A. and Sahl, H.G., Nat. Rev. Microbiol., 2006, vol. 4, no. 7, pp. 529–536.

    Article  PubMed  CAS  Google Scholar 

  3. Chung, P.Y. and Khanum, R., J. Microbiol. Immunol. Infect., 2017, vol. 50, no. 4, pp. 405–410.

    Article  PubMed  CAS  Google Scholar 

  4. Bechinger, B. and Gorr, S.U., J. Dent. Res., 2017, vol. 96, no. 3, pp. 254–260.

    Article  PubMed  CAS  Google Scholar 

  5. Mahlapuu, M., Hakansson, J., Ringstad, L., and Bjorn, C., Front. Cell. Infect. Microbiol., 2016, vol. 6, p. 194. doi 10.3389/fcimb.2016.00194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Balandin, S.V. and Ovchinnikova, T.V., Russ. J. Bioorg. Chem., 2016, vol. 42, no. 3, pp. 229–248.

    Article  CAS  Google Scholar 

  7. Brown, K.L. and Hancock, R.E., Curr. Opin. Immunol., 2006, vol. 18, no. 1, pp. 24–30.

    Article  PubMed  CAS  Google Scholar 

  8. Azimova, V.T., Potaturkina-Nesterova, N.I., and Nesterov, A.S., Modern Probl. Sci. Education, 2015, no. 1. https://science-education.ru/ru/article/view?id=17746. Accessed November 10, 2017.

    Google Scholar 

  9. Jenssen, H., Hamill, P., and Hancock, R.E., Clin. Microbiol. Rev., 2006, vol. 19, no. 3, pp. 491–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yeaman, M.R. and Yount, N.Y., Pharmacol. Rev., 2003, vol. 55, no. 1, pp. 27–55.

    Article  PubMed  CAS  Google Scholar 

  11. Balandin, S.V. and Ovchinnikova, T.V., Russ. J. Bioorg. Chem., 2016, vol. 42, no. 4, pp. 343–360.

    Article  CAS  Google Scholar 

  12. Matsuzaki, K., Biochim. Biophys. Acta, 1999, vol. 1462, nos. 1–2, pp. 1–10.

    PubMed  CAS  Google Scholar 

  13. Okorochenkov, S.A., Zheltukhina, G.A., and Nebol’sin, V.E., Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 2011, vol. 5, no. 2, pp. 95–102.

    Article  Google Scholar 

  14. Bilikova, K., Huang, S.C., Lin, I.P., Simuth, J., and Peng, C.C., Peptides, 2015, vol. 68, pp. 190–196.

    Article  PubMed  CAS  Google Scholar 

  15. Panteleev, P.V., Bolosov, I.A., Balandin, S.V., and Ovchinnikova, T.V., J. Pept. Sci., 2015, vol. 21, no. 2, pp. 105–113.

    Article  PubMed  CAS  Google Scholar 

  16. Giuliani, A., Pirri, G., and Nicoletto, S.F., Cent. Eur. J. Biol., 2007, vol. 2, no. 1, pp. 1–33.

    CAS  Google Scholar 

  17. Oren, Z. and Shai, Y., Biochemistry, 1997, vol. 36, no. 7, pp. 1826–1835.

    Article  PubMed  CAS  Google Scholar 

  18. Chen, Y., Mant, C.T., Farmer, S.W., Hancock, R.E., Vasil, M.L., and Hodges, R.S., J. Biol. Chem., 2005, vol. 280, no. 13, pp. 12316–12329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Powers, J.P. and Hancock, R.E., Peptides, 2003, vol. 24, no. 11, pp. 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenberg, D., Weiss, R.M., and Terwilliger, T.C., Nature, 1982, vol. 299, no. 5881, pp. 371–374.

    Article  PubMed  CAS  Google Scholar 

  21. Schiffer, M. and Edmundson, A.B., Biophys. J., 1967, vol. 7, no. 2, pp. 121–135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Oren, Z. and Shai, Y., Biopolymers, 1998, vol. 47.

    Google Scholar 

  23. Eisenberg, D., Annu. Rev. Biochem., 1984, vol. 53, pp. 595–623.

    Article  PubMed  CAS  Google Scholar 

  24. Ghosal, A. and Nielsen, P.E., Nucl. Acids Ther., 2012, vol. 22, no. 5, pp. 323–334.

    Article  CAS  Google Scholar 

  25. Mellbye, B.L., Puckett, S.E., Tilley, L.D., Iversen, P.L., and Geller, B.L., Antimicrob. Agents Chemother., 2009, vol. 53, no. 2, pp. 525–430.

    Article  PubMed  CAS  Google Scholar 

  26. Moulton, H.M., Nelson, M.H., Hatlevig, S.A., Reddy, M.T., and Iversen, P.L., Bioconjug. Chem., 2004, vol. 15, no. 2, pp. 290–299.

    Article  PubMed  CAS  Google Scholar 

  27. Turner, J.J., Arzumanov, A.A., and Gait, M.J., Nucleic Acids Res., 2005, vol. 33, no. 1, pp. 27–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shai, Y., Biochim. Biophys. Acta, 1999, vol. 1462, nos. 1–2, pp. 55–70.

    Article  PubMed  CAS  Google Scholar 

  29. Pacor, S., Giangaspero, A., Bacac, M., Sava, G., and Tossi, A., J. Antimicrob. Chemother., 2002, vol. 50, no. 3, pp. 339–348.

    Article  PubMed  CAS  Google Scholar 

  30. Silva, A., Jr. and Teschke, O., Biochim. Biophys. Acta, 2003, vol. 1643, nos. 1–3, pp. 95–103.

    Article  PubMed  CAS  Google Scholar 

  31. Jacobsen, F., Mohammadi-Tabrisi, A., Hirsch, T., Mittler, D., Mygind, P.H., Sonksen, C.P., Raventos, D., Kristensen, H.H., Gatermann, S., Lehnhardt, M., Daigeler, A., Steinau, H.U., and Steinstraesser, L., J. Antimicrob. Chemother., 2007, vol. 59, no. 3, pp. 493–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Amirkhanov.

Additional information

Original Russian Text © N.V. Amirkhanov, N.V. Tikunova, D.V. Pyshnyi, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 5, pp. 492–505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhanov, N.V., Tikunova, N.V. & Pyshnyi, D.V. Synthetic Antimicrobial Peptides: I. Antimicrobial Activity of Amphiphilic and Nonamphiphilic Cationic Peptides. Russ J Bioorg Chem 44, 492–503 (2018). https://doi.org/10.1134/S1068162018050035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018050035

Keywords

Navigation