Skip to main content

A New Iq-Peptide of the Kunitz Type from the Heteractis magnifica Sea Anemone Exhibits Neuroprotective Activity in a Model of Alzheimer’s Disease

Abstract

The HMIQ3c1 recombinant peptide (6434 Da), the Kunitz-type protease inhibitor, which belonged to the new group of the IQ-peptides from the Heteractis magnifica sea anemone was prepared. The inhibitory constant of trypsin by this peptide proved to be 5.0 × 10–8 M. rHMIQ3c1 was shown to have no interaction with eight isoforms of Kv1 channels. This peptide exhibited neuroprotective activity in a concentration of 10 μM, and the peptide increased the viability of cells of the Neuro2a murine neuroblastoma by 39.4 ± 6.6% in the presence of β-amyloid. However, the peptide did not influence the viability of the cells during their incubation with 6-hydroxydofamine.

This is a preview of subscription content, access via your institution.

Abbreviations

AMPAR:

the receptor that binds α-amino-3-hydrpxy-5-methyl-4-isoxazolepropionic acid

BPTI:

bovine pancreatic trypsin inhibitor

Kv:

potential-dependent K+-channel

NMDAR:

receptor that binds N-метил-D-aspartate

TNFα:

tumor necrosis factor alpha

TRPV1:

Transient Receptor Potential cation channel subfamily V member 1

LPS:

lipopolysaccharide

References

  1. Rosenthal, N., Nat. Med., 2014, vol. 20, pp. 857–869.

    Article  PubMed  CAS  Google Scholar 

  2. Zykova, T.A., Vinokurov, L.M., Markova, L.F., Kozlovskaya, E.P., and Elyakov, G.B., Russ. J. Bioorg. Chem., 1985, vol. 11, pp. 293–301.

    CAS  Google Scholar 

  3. Gladkikh, I., Monastyrnaya, M., Leychenko, E., Zelepuga, E., Chausova, V., Isaeva, M., Anastyuk, S., Andreev, Y., Peigneur, S., Tytgat, J., and Kozlovkaya, E., Mar. Drugs, 2012, vol. 10, pp. 1545–1565.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang, W., Feng, J., Wang, B., Cao, Z., Li, W., Wu, Y., and Chen, Z., J. Biochem. Mol. Toxicol., 2014, vol. 28, pp. 76–83.

    Article  PubMed  CAS  Google Scholar 

  5. Minagawa, S., Sugiyam, M., Ishida, M., Nagashima, Y., and Shiomi, K., Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2008, vol. 150, pp. 240–245.

    Google Scholar 

  6. Minagawa, S., Ishida, M., Shimakura, K., Nagashima, Y., and Shiomi, K., Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1997, vol. 118, pp. 381–386.

    CAS  Google Scholar 

  7. Delfin, J., Martinez, I., Antuch, W., Morera, V., Gonzalez, Y., Rodriguez, R., Marquez, M., Saroyan, A., Larionova, N., Diaz, J., Padron, G., and Chavez, M., Toxicon, 1996, vol. 34, pp. 1367–1376.

    Article  PubMed  CAS  Google Scholar 

  8. Alonso-del-Rivero, M., Trejo, S.A., Reytor, M.L., Rodriguez-de-la-Vega, M., Delfin, J., Diaz, J., González-González, Y., Canals, F., Chavez, M.A., and Aviles, F.X., J. Biol. Chem., 2012, vol. 287, pp. 15427–15438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J.M., Beress, L., and Lazdunski, M., J. Biol. Chem., 1995, vol. 270, pp. 25121–25126.

    Article  PubMed  CAS  Google Scholar 

  10. García-Fernández, R., Peigneur, S., Pons, T., Alvarez, C., González, L., Chávez, M.A., and Tytgat, J., Toxins, 2016, vol. 8, no. 110, pp. 2–17. doi 10.3390/toxins8040110

    Google Scholar 

  11. Bayrhuber, M., Vijayan, V., Ferber, M., Graf, R., Korukottu, J., Imperial, J., Garrett, J.E., Olivera, B.M., Terlau, H., Zweckstetter, M., and Becker, S., J. Biol. Chem., 2005, vol. 280, pp. 23766–23770.

    Article  PubMed  CAS  Google Scholar 

  12. DePoli, P., Bacon-Baguley, T., Kendra-Franczak, S., Cederholm, M.T., and Walz, D.A., Blood, 1989, vol. 73, pp. 976–982.

    PubMed  CAS  Google Scholar 

  13. Honma, T., Kawahata, S., Ishida, M., Nagai, H., Nagashima, Y., and Shiomi, K., Peptides, 2008, vol. 29, pp. 536–544.

    Article  PubMed  CAS  Google Scholar 

  14. Andreev, Y.A., Kozlov, S.A., Koshelev, S.G., Ivanova, E.A., Monastyrnaya, M.M., Kozlovskaya, E.P., and Grishin, E.V., J. Biol. Chem., 2008, vol. 283, pp. 23914–23921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sokotun, I.N., Leichenko, E.V., Vakorina, T.I., Es’kov, A.A., Il’ina, A.P., Monastyrnaia, M.M., and Kozlovskaia, E.P., Russ. J. Bioorg. Chem., 2007, vol. 33, pp. 415–422.

    Article  CAS  Google Scholar 

  16. Sintsova, O.V., Pislyagin, E.A., Gladkikh, I.N., Monastyrnaya, M.M., Menchinskaya, E.S., Leychenko, E.V., Aminin, D.L., and Kozlovskaya, E.P., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 105–112.

    Article  CAS  Google Scholar 

  17. Morjen, M., Kallech-Ziri, O., Bazaa, A., Othman, H., Mabrouk, K., Zouari-Kessentini, R., Sanz, L., Calvete, J.J., Srairi-Abid, N., El Ayeb, M., Luis, J., and Marrakchi, N., Matrix Biol., 2013, vol. 32, pp. 52–62.

    Article  PubMed  CAS  Google Scholar 

  18. Isaeva, M.P., Chausova, V.E., Zelepuga, E.A., Guzev, K.V., Tabakmakher, V.M., Monastyrnaya, M.M., and Kozlovskaya, E.P., Peptides, 2012, vol. 34, pp. 88–97.

    Article  PubMed  CAS  Google Scholar 

  19. Sintsova, O.V., Monastyrnaya, M.M., Pislyagin, E.A., Menchinskaya, E.S., Leychenko, E.V., Aminin, D.L., and Kozlovskaya, E.P., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 590–596.

    Article  CAS  Google Scholar 

  20. Gladkikh, I., Monastyrnaya, M., Zelepuga, E., Sintsova, O., Tabakmakher, V., Gnedenko, O., Ivanov, A., Hua, K.-F., and Kozlovskaya, E., Mar. Drugs, 2015, vol. 13, pp. 6038–6063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kozlov, S.A., Andreev, Y.A., Murashev, A.N., Skobtsov, D.I., D’yachenko, I.A., and Grishin, E.V., Russ. J. Bioorg. Chem., 2009, vol. 35, pp. 711–719.

    Article  CAS  Google Scholar 

  22. Zelepuga, E.A., Tabakmakher, V.M., Chausova, V.E., Monastyrnaya, M.M., Isaeva, M.P., and Kozlovskaya, E.P., Russ. J. Bioorg. Chem., 2012, vol. 38, pp. 159–170.

    Article  CAS  Google Scholar 

  23. Monastyrnaya, M., Peigneur, S., Zelepuga, E., Sintsova, O., Gladkikh, I., Leychenko, E., Isaeva, M., Tytgat, J., and Kozlovskaya, E., Mar. Drugs, 2016, vol. 14, no. 229. doi 10.3390/md14120229

    Google Scholar 

  24. Tabakmakher, V.M., Sintsova, O.V., Krivoshapko, O.N., Zelepuga, E.A., Monastyrnaya, M.M., and Kozlovskaya, E.P., Dokl. Biochem. Biophys., 2015, vol. 461, pp. 80–83.

    Article  PubMed  CAS  Google Scholar 

  25. Metrione, R.M., Schweitz, H., and Walsh, K.A., FEBS Lett., 1987, vol. 218, pp. 59–62.

    Article  PubMed  CAS  Google Scholar 

  26. Gendeh, G.S., Young, L.C., De Medeiros, C.L.C., Jeyaseelan, K., Harvey, A.L., and Chung, M.C.M., Biochemistry, 1997, vol. 36, pp. 11461–11471.

    Article  CAS  Google Scholar 

  27. Wang, Y., Yap, L.L., Chua, K.L., and Khoo, H.E., Toxicon, 2008, vol. 51, pp. 1374–1382.

    Article  PubMed  CAS  Google Scholar 

  28. Sintsova, O., Gladkikh, I., Chausova, V., Monastyrnaya, M., Anastyuk, S., Chernikov, O., Yurchenko, E., Aminin, D., Isaeva, M., Leychenko, E., and Kozlovskaya, E., J. Proteom., 2018, vol. 173, pp. 12–21.

    Article  CAS  Google Scholar 

  29. Anderluh, G. and Macek, P., Toxicon, 2002, vol. 40, pp. 111–124.

    Article  PubMed  CAS  Google Scholar 

  30. Vincent, J.-P. and Lazdunski, M., Biochemistry, 1972, vol. 11, pp. 2967–2977.

    Article  PubMed  CAS  Google Scholar 

  31. Snyder, E.M., Nong, Y., Almeida, C.G., Paul, S., Moran, T., Choi, E.Y., Nairn, A.C., Salter, M.W., Lombroso, P.J., Gouras, G.K., and Greengard, P., Nat. Neurosci., 2005, vol. 8, pp. 1051–1058.

    Article  PubMed  CAS  Google Scholar 

  32. Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., and Sabatini, B.L., J. Neurosci., 2007, vol. 27, pp. 2866–2875.

    Article  PubMed  CAS  Google Scholar 

  33. Shankar, G.M. and Walsh, D.M., Mol. Neurodegener., 2009, vol. 4, no. 48.

    Google Scholar 

  34. Yamazaki, M., Chiba, K., and Satoh, K., J. Health Sci, 2008, vol. 54, pp. 638–644. doi.org/doi 10.1186/1750-1326-4-48

    Article  CAS  Google Scholar 

  35. Soto-Otero, R., Méndez-Álvarez, E., Hermida-Ameijeiras, A., Munoz-Patino, A.M., and Labandeira-Garcia, J.L., J. Neurochem., 2000, vol. 74, pp. 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  36. Small, G., Liston, E., and Jarvik, L., West. J. Med., 1981, vol. 135, pp. 469–470.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Kreft, A., Martone, R., and Porte, A., J. Med. Chem., 2009, vol. 52, pp. 6169–6188.

    Article  PubMed  CAS  Google Scholar 

  38. Georgievska, B., Sandin, J., Doherty, J., Mortberg, A., Neelissen, J., Andersson, A., Gruber, S., Nilsson, Y., Schott, P., Arvidsson, P.I., Hellberg, S., Osswald, G., Berg, S., Falting, J., and Bhat, R.V., J. Neurochem., 2013, vol. 125, pp. 446–456.

    Article  PubMed  CAS  Google Scholar 

  39. http://blast.ncbi.nlm.nih.gov.

  40. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Felsenstein, J., Evolution, 1985, vol. 39, pp. 783–791.

    Article  PubMed  Google Scholar 

  42. Andreev, Y.A., Kozlov, S.A., Vassilevski, A.A., and Grishin, E.V., Anal. Biochem., 2010, vol. 407, pp. 144–146.

    Article  PubMed  CAS  Google Scholar 

  43. Dixon, M., Biochem. J., 1953, vol. 55, pp. 170–171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Castaneda, O., Sotolongo, V., Amor, A.M., Stocklin, R., Anderson, A.J., Harvey, A.L., Engstrom, A., Wernstedt, C., and Karlsson, E., Toxicon, 1995, vol. 33, pp. 603–613.

    Article  PubMed  CAS  Google Scholar 

  45. Carmichael, J., Degraff, W.G., Gazdar, A.F., Minna, J.D., and Mitchell, J.B., Am. Assoc. Cancer Res., 1987, vol. 47, pp. 936–942.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Leychenko.

Additional information

Original Russian Text © A.N. Kvetkina, E.V. Leychenko, E.A. Yurchenko, E.A. Pislyagin, S. Peigneur, Y. Tytgat, M.P. Isaeva, D.L. Aminin, E.P. Kozlovskaya, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 4, pp. 408–416.

The paper is published based on the materials of the report presented at the “Second Elyakov Readings”, October 6, 2017, Vladivostok.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kvetkina, A.N., Leychenko, E.V., Yurchenko, E.A. et al. A New Iq-Peptide of the Kunitz Type from the Heteractis magnifica Sea Anemone Exhibits Neuroprotective Activity in a Model of Alzheimer’s Disease. Russ J Bioorg Chem 44, 416–423 (2018). https://doi.org/10.1134/S106816201804012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816201804012X

Keywords

  • sea anemone
  • Kunitz-type protease inhibitors
  • neuroprotective activity