Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 3, pp 337–345 | Cite as

Dependence of Ion Channel Properties Formed by Polyene Antibiotics Molecules on the Lactone Ring Structure

  • A. A. Samedova
  • T. P. Tagi-zade
  • Kh. M. Kasumov
Article

Abstract

The properties of ion channels formed in membranes by polyene antibiotics of various chemical structure of hydrophilic and hydrophobic chains are investigated. Small differences in a hydrophylic chain with a changed number of hydroxyl and carbonyl groups significantly influence the values of conductivity and selectivity of the polyene channel. The greater number of double bonds in a hydrophobic part of polyene molecules leads to the higher biological activity of antibiotics. Measurement of anion–cationic selectivity of the channels formed by polyenes showed that anionic selectivity, as well as conductivity of channels, decreases among antibiotics: amphotericin B, nystatin, candidin, mycoheptin, and levorin. The study of physical and chemical properties of the single and hybrid ion channels on the bilayer lipid membranes in the presence of polyene antibiotics makes possible to create a theoretically reasonable recommendation for the targeted synthesis of new antibiotics with the desired properties.

Keywords

polyene antibiotics chemical structure bilayer lipid membranes ionic channels conductivity selectivity hybrid of ionic channels 

Abbreviations

BLM

bilayer lipid membranes

PA

polyene antibiotics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borowski, E., Farmaco, 2000, vol. 55, pp. 206–208.CrossRefPubMedGoogle Scholar
  2. 2.
    Kasumov Kh.M., Struktura i membrannaya funktsiya polienovykh makrolidnykh antibiotikov (Structure and Membrane Function of Polyenoic Macrolide Antibiotics), Moscow: Nauka, 2009.Google Scholar
  3. 3.
    DeKruyff, B. and Demel, R.A., Biochim. Biophys. Acta, 1974, vol. 339, pp. 57–70.CrossRefGoogle Scholar
  4. 4.
    Gray, K.C., Palacios, D.S., Dailey, I., Endo, M.M., Uno, B.E., Wilcock, B.C., and Burke, M.D., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 2234–2239.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zotchev, S.B., Curr. Med. Chem., 2003, vol. 10, pp. 211–223.CrossRefPubMedGoogle Scholar
  6. 6.
    Palacios, D.S., Dailey, I., Siebert, D.M., Wilcock, B.C., and Burke, M.D., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 17, pp. 6733–6738.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dromer, F., Barbet, J., Bolard, J., Charreire, J., and Yeni, P., Antimicrob. Agents Chemother., 1990, vol. 34, pp. 2055–2060.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ermishkin, L. and Zil’bershtein, A., in Itogi nauki i tekhniki. Biofizika membran. Ionnye kanaly i ikh modeli (Advances in Science and Technology. Biophysics of Membranes. Ion Channels and Their Models), Moscow, 1982, vol. 2, pp. 82–160.Google Scholar
  9. 9.
    Kasumov, Kh.M., Mekhtiev, N.Kh., and Karakozov, S.D., Biochim. Biophys. Acta, 1981, vol. 644, pp. 369–372.CrossRefPubMedGoogle Scholar
  10. 10.
    Kasumov, Kh., Borisova, M., Ermishkin, L., Potseluyev, V., Silberstein, A., and Vainshtein, V., Biochim. Biophys. Acta, 1979, vol. 551, pp. 229–237.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Zutphen, H., Van Deenen, L.L.M., and Kinsky, S.C., Biochem. Biophys. Res. Commun., 1969, vol. 22, no. 4, pp. 393–398.CrossRefGoogle Scholar
  12. 12.
    Ibragimova, V.Kh., Alieva, I.N., and Kasumov, Kh.M., Biol. Membr., 2006, vol. 23, no. 6, pp. 493–502.Google Scholar
  13. 13.
    Ibragimova, V., Alieva, I., Kasumov, Kh., and Khutorsky, V., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 29–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Récamier, K.S., Hernández-Gómez, A., González-Damián, J., and Ortega-Blake, I., J. Membr. Biol., 2010, vol. 237, no. 1, pp. 31–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Tevyashova, A.N., Olsufyeva, E.N., and Preobrashenskaya, M.N., Russ. Chem. Rev., 2015, vol. 84, no. 1, pp. 1–97.CrossRefGoogle Scholar
  16. 16.
    Cybulska, B., Bolard, J., Seksek, O., Czerwinski, A., and Borowski, E., Biochim. Biophys. Acta, 1995, vol. 1240, pp. 167–178.CrossRefPubMedGoogle Scholar
  17. 17.
    Sultanova, G.G., Samedova, A.A., and Kasumov, Kh.M., Antibiot. Khimioter., 2007, vol. 52, nos. 9–10, pp. 9–13.PubMedGoogle Scholar
  18. 18.
    Taylor, A.W., Costello, B.J., Hunter, P.A., Maclanand, W.S., and Shanks, C.T., J. Antobiot., 1993, vol. 46, pp. 486–493.CrossRefGoogle Scholar
  19. 19.
    Gary-Bobo, C.M., Biochimie, 1989, vol. 71, no. 1, pp. 37–47.CrossRefPubMedGoogle Scholar
  20. 20.
    Mueller, P., Rudin, D.O., Tien, H.T., and Wescott, W.C., J. Phys. Chem., 1963, vol. 67, pp. 534–535.CrossRefGoogle Scholar
  21. 21.
    Folch, J., Leess, M., and Sloane-Stanley, G.H., J. Biol. Chem., 1957, vol. 226, pp. 497–509.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Samedova
    • 1
  • T. P. Tagi-zade
    • 1
    • 2
  • Kh. M. Kasumov
    • 1
    • 2
  1. 1.Institute of BotanyAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Azerbaijan State Academy of Physical Education and SportBakuAzerbaijan

Personalised recommendations