Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 165–172 | Cite as

Conformational Transitions in 3D Model of Bovine Testicular Hyaluronidase during Molecular Docking with Glycosaminoglycan Ligands

  • A. V. Maksimenko
  • R. S. Beabealashvili


In silico molecular docking of the trimer repeating unit of chondroitin sulfate (sulfated hexasaccharide) and tetramer repeating unit of heparin (sulfated octasaccharide) to the 3D model of bovine testicular hyaluronidase by the methods of computational chemistry demonstrated the presence of eight significant binding sites for these ligands (cs1–cs8). The interaction of the active site of the enzyme with the heparin ligand, which inactivates the enzyme, and the protective effect of the chondroitin sulfate ligands bound to the surface sites of the biocatalyst molecule were theoretically studied using calculation approaches. We sequentially determined binding sites for the chondroitin sulfate ligands (in positions cs2, cs4, cs7, cs8 or cs1, cs2, cs4, cs7, cs8) critical for the protein structure stabilization, whose occupancy is theoretically sufficient to prevent irreversible deformations of the enzyme molecule when the heparin ligand is introduced into the cavity of its active site. Theoretical detection of these ‘sensibility points’ on the hyaluronidase globule indicates the possibility of regulating its functioning under the binding of the glycosaminoglycan ligands that initiate the fine formation of an effective type of the surface electrostatic potential. The interaction of the glycosaminoglycan ligands with hyaluronidase is mainly determined by electrostatic forces.


bovine testicular hyaluronidase tertiary structure glycosaminoglycan ligands chondroitin sulfate heparin docking protein surface electrostatic potential enzyme functioning regulation 



three-dimensional (tertiary) structure of the protein


bovine testicular hyaluronidase






chondroitin sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maksimenko, A.V., Acta Naturae, 2012, vol. 4, no. 3, pp. 72–81.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Maksimenko, A.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 2, pp. 357–363.CrossRefGoogle Scholar
  3. 3.
    Maksimenko, A.V., Turashev, A.D., and Beabealashvili, R.S., Biochemistry (Moscow), 2015, vol. 80, no. 3, pp. 284–295.CrossRefGoogle Scholar
  4. 4.
    Jayakanthan, M., Jubendradass, R., D’Cruz, S.C., and Mathur, P.P., Methods Mol. Biol., 2015, vol. 1268, pp. 273–289.CrossRefPubMedGoogle Scholar
  5. 5.
    Batool, S., Ferdous, S., Kamal, M.A., Iftikhar, H., and Rashid, S., Enz. Eng., 2013, vol. 2, pp. 1–12. doi 10.4172/eeg.1000106Google Scholar
  6. 6.
    Samsonov, S.A., Teyra, J., and Pisabarro, M.T., J. Comput. Aided Mol. Des., 2011, vol. 25, no. 5, pp. 477–489. doi 10.1007/s10822-011-9433-1CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grant, O.C., Tessier, M.B., Meche, L., Mahal, L.K., Foley, B.L., and Woods, R.J., Glycobiology, 2016, vol. 26, no. 7, pp. 772–783. doi 10.1093/glycob/cww020CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maksimenko, A.V. and Turashev, A.D., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 2, pp. 119–128.CrossRefGoogle Scholar
  9. 9.
    Maksimenko, A.V. and Turashev, A.D., Russ. J. Bioorg. Chem., 2014, vol. 40. no. 3, pp. 237–251.CrossRefGoogle Scholar
  10. 10.
    Chao, K.L., Muthukumar, L., and Herzberg, O., Biochemistry, 2007, vol. 46, pp. 6911–6920.CrossRefPubMedGoogle Scholar
  11. 11.
    Maksimenko, A.V., Russ. Chem. Bull., 2015, vol. 64, no. 9, pp. 1–7.CrossRefGoogle Scholar
  12. 12.
    Zhang, F., Walcott, B., Zhou, D., Gustchina, A., Lasanajak, Y., Smith, D.F., Fereira, R.S., Correia, M.T.S., Paiva, P.M.G., Bovin, N.V., Wlodawer, A., Oliva, M.L.V., and Linhardt, R.J., Biochemistry, 2013, vol. 52, pp. 2148–2156.CrossRefPubMedGoogle Scholar
  13. 13.
    Yadav, V.K., Mandal, R.S., Puniya, B.L., Kumar, R., Day, S., Singh, S., and Yadav, S., Chem. Biol., Drug Des., 2015, vol. 85, pp. 404–410.CrossRefGoogle Scholar
  14. 14.
    Maksimenko, A.V. and Beabealashvili, R.S., Kardiolog. Vestnik, 2016, vol. XI, pp. 70–75.Google Scholar
  15. 15.
    Gandhi, N.S., Freeman, C., Parish, C.R., and Mancera, R.L., Glycobiology, 2012, vol. 22, pp. 35–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Batra, J., Tjong, H., and Zhou, H.-X., Prot. Eng. Des. Sel., 2016, vol. 29, pp. 301–308.CrossRefGoogle Scholar
  17. 17.
    Sakkiah, S., Arooj, M., Kumar, M.R., Eom, S.H., and Lee, K.W., PLoS One, 2013, vol. 8, p. e51429. doi 10.1371/journal.pone.0051429CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang, B., Li, L., Hurley, T.D., and Meroneh, S.O., J. Chem. Inf. Model., 2013, vol. 53, pp. 2659–2670.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maksimenko, A.V., Russ. Chem. Bull., 2017, vol. 66, no. 1, pp. 1–8.CrossRefGoogle Scholar
  20. 20.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput. Chem., 2004, vol. 25, no. 13, pp. 1605–1612.CrossRefPubMedGoogle Scholar
  21. 21.
    Sanner, M.F., Olson, A.J., and Spehner, J.C., Biopolymers, 1996, vol. 38, no. 3, pp. 305–320.CrossRefPubMedGoogle Scholar
  22. 22.
    Lang, P.T., Brozell, S.R., Mukherjee, S., Pettersen, E.F., Meng, E.C., Thomas, V., Rizzo, R.C., Case, D.A., James, T.L., and Kuntz, I.D., RNA, 2009, vol. 15, no. 6, pp. 1219–1230.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E., Jensen, J.E., Klebe, G., and Baker, N.A., Nucleic Acids Res., 2007, vol. 35, pp. W522–W525.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., and Baker, N.A., Nucleic Acids Res., 2004, vol. 32, pp. W665–W667.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 10037–10041.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Honig, B. and Nicholls, A., Science, 1995, vol. 268, pp. 1144–1149.CrossRefPubMedGoogle Scholar
  27. 27.
    Nicholls, A., Sharp, K., and Honig, B., Proteins, 1991, vol. 11, no. 4, pp. 281–286.CrossRefPubMedGoogle Scholar
  28. 28.
    Klapper, I., Hagstrom, R., Fine, R., and Honig, B., Proteins, 1986, vol. 1, pp. 47–59.CrossRefPubMedGoogle Scholar
  29. 29.
    Guex, N. and Peitsch, M.C., Electrophoresis, 1997, vol. 18, pp. 2714–2723.CrossRefPubMedGoogle Scholar
  30. 30.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comput. Chem., 2005, vol. 26, pp. 1781–1802.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Experimental CardiologyNational Medical Research Center for CardiologyMoscowRussia

Personalised recommendations