Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 199–209 | Cite as

Designing a Cell Surface Display System of Protein Domains in Lactobacilli Based on S-Layer Proteins of Lactobacillus brevis ATCC 367

  • S. V. Rykov
  • Y. E. Yegorov
  • H. S. Vishnyakova
  • O. V. Berezina
Article
  • 34 Downloads

Abstract

S-layer proteins of lactobacilli may be utilized for developing a surface display system in these bacteria. In this study, S-layer proteins of Lactobacillus brevis ATCC 367 were identified for the first time. Using the peptide fingerprint method, it was shown that the main protein of the S-layer of this strain, SlpE, having a mass of 52 kDa is the product of translation of the consecutive open reading frames LVIS_2086 and LVIS_2085. Repeated sequencing of a genome region of L. brevis ATCC 367, containing LVIS_2086 and LVIS_2085 loci, has showed that the LVIS_2086 sequence contains the TGG tryptophan codon instead of the TAG stop codon. Thus, LVIS_2085 and LVIS_2086 form a single slpE gene, the nucleotide sequence we deposited in the Genbank database under No. KY273133. The translation product of the slpE gene consists of 465 amino acids and has a calculated mass of 51.6 kDa, which corresponds to the experimentally obtained value. An S-layer protein with a mass of 56 kDa, identified as a form of the SlpE, is probably formed during the posttranslational modification. The concomitant 48 kDa S-protein was proven to be product of the LVIS- 2083 gene. The N-terminal domains of LVIS_2083 and SlpE have 70.7 and 96.5%, respectively, identity to the anchoring N-terminal domain of SlpA from L. brevis ATCC 8287, which is responsible for attachment to the cell wall. In this work, fusion proteins consisting of N-terminal domains of Lvis_2083 and SlpA proteins and the eGFP marker protein were obtained. The ability of fusion proteins SlpA_eGFP and Lvis_2083_eGFP, as well as the recombinant Lvis_2083 protein, to be specifically sorbed on the cell wall of L. brevis ATCC 8287, ATCC 367, and L. acidophilus ATCC 4356 strains has been demonstrated. It was shown that in the chimeric Lvis_2083_eGFP construction the N-terminal domain Lvis_2083 is responsible for an attachment to the cell wall and provides display of the functionally active eGFP protein on its surface. Thus, the N-terminal domain Lvis_2083 can be used as a basis of the protein display system on the cell surface of L. brevis strains in vitro.

Keywords

Lactobacillus brevis ATCC 367 S-layer surface layer protein surface display systems 

Abbreviations

ATCC

American Type Culture Collection

eGFP

enhanced green fluorescence protein

GRAS

generally recognized as safe

IPTG

isopropyl-β-D-thiogalactoside

MALDI-TOF

matrix-assisted laser desorption/ionization time-of-flight

VKPM

All-Russian collection of industrial microorganisms

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Debabov, V.G., Mol. Biol., 2004, vol. 38, no. 4, pp. 578–591.CrossRefGoogle Scholar
  2. 2.
    Hynönen, U. and Palva, A., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 12, pp. 5225–5243.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hagen, K.E., Guan, L.L., Tannock, G.W., Korver, D.R., and Allison, G.E., Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 6633–6643.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Åvall-Jääskeläinen, S. and Palva, A., FEMS Microbiol. Rev., 2005, vol. 29, pp. 511–529.CrossRefPubMedGoogle Scholar
  5. 5.
    Lupas, A., Engelhardt, H., Peters, J., Santarius, U., Volker, S., and Baumeister, W., J. Bacteriol., 1994, vol. 176, pp. 1224–1233.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Smit, E., Jager, D., Martinez, B., Tielen, F.J., and Pouwels, P.H., J. Mol. Biol., 2002, vol. 324, pp. 953–964.CrossRefPubMedGoogle Scholar
  7. 7.
    Antikainen, J., Anton, L., Sillanpää, J., and Korhonen, T.K., Mol. Microbiol., 2002, vol. 46, pp. 381–394.CrossRefPubMedGoogle Scholar
  8. 8.
    Sun, Z., Kong, J., Hu, S., Kong, W., Lu, W., and Liu, W., Appl. Microbiol. Biotechnol., 2013, vol. 95, no. 5, pp. 1941–1952.CrossRefGoogle Scholar
  9. 9.
    Avall-Jääskeläinen, S., Hynönen, U., Ilk, N., Pum, D., Sleytr, U.B., and Palva, A., BMC. Microbiol., 2008, vol. 8, no. 165. doi 10.1186/1471-2180-8-165Google Scholar
  10. 10.
    Dohm, N., Petri, A., Schlander, M., Schlott, B., König, H., and Claus, H., Arch. Microbiol., 2011, vol. 193, pp. 251–261.CrossRefPubMedGoogle Scholar
  11. 11.
    Leenhouts, K., Buist, G., and Kok, J., Antonie van Leeuwenhoek, 1999, vol. 76, pp. 367–376.CrossRefPubMedGoogle Scholar
  12. 12.
    Yu, Q., Zhu, L., Kang, H., and Yang, Q., Hum. Vaccin. Immunother., 2013, vol. 9, no. 4, pp. 805–807.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Marraffini, L.A., Dedent, A.C., and Schneewind, O., Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 192–221.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Narita, J., Okano, K., Kitao, T., Ishida, S., Sewaki, T., Sung, M.H., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2006, vol. 72, pp. 269–275.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Okano, K., Zhang, Q., Kimura, S., Narita, J., Tanaka, T., Fukuda, H., and Kondo, A., Appl. Environ. Microbiol., 2008, vol. 74, pp. 1117–1123.CrossRefPubMedGoogle Scholar
  16. 16.
    Avall-Jääskeläinen, S., Kylä-Nikkilä, K., Kahala, M., Miikkulainen-Lahti, T., and Palva, A., Appl. Environ. Microbiol., 2002, vol. 68, no. 12, pp. 5943–5951.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hu, S., Kong, J., Sun, Z., Han, L., Kong, W., and Yang, P., Microb. Cell Fact., 2011, vol. 10, no. 86. doi 10.1186/1475-2859-10-86Google Scholar
  18. 18.
    Vidgrén, G., Palva, I., Pakkanen, R., Lounatmaa, K., and Palva, A., J Bacteriol, 1992, vol. 174, no. 22, pp. 7419–7427.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jakava-Viljanen, M., Avall-Jääskeläinen, S., Messner, P., Sleytr, U.B., and Palva, A., J. Bacteriol., 2002, vol. 184, no. 24, pp. 6786–6795.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D.M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J.H., Díaz-Muñiz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O’Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B., and Mills, D., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 42, pp. 15611–15616.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Anzengruber, J., Pabst, M., Neumann, L., Sekot, G., Heinl, S., Grabherr, R., Altmann, F., Messner, P., and Schäffer, C., Glycoconj. J., 2014, vol. 31, no. 2, pp. 117–131.CrossRefPubMedGoogle Scholar
  22. 22.
    Yasui, T., Yoda, K., and Kamiya, T., FEMS Microbiol. Letts., 1995, vol. 133, pp. 181–186.CrossRefGoogle Scholar
  23. 23.
    Petrovskaya, L.E., Gapizov, S.Sh., Shingarova, L.N., Kryukova, E.A., Boldyreva, E.F., Yakimov, S.A., Svirshchevskaya, E.V., Lukashev, E.P., Dolgikh, D.A., and Kirpichnikov, M.P., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 4, pp. 375–382.CrossRefGoogle Scholar
  24. 24.
    Sambrook, J., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Rykov
    • 1
  • Y. E. Yegorov
    • 2
  • H. S. Vishnyakova
    • 2
  • O. V. Berezina
    • 1
  1. 1.State Research Institute of Genetics and Selection of Industrial MicroorganismsMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyMoscowRussia

Personalised recommendations