Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 1, pp 19–31 | Cite as

Modern Approaches to Chemical Modification of Proteins in Biological Tissues: Consequences and Application

  • M. A. Rezvova
  • Yu. A. Kudryavceva
Review Article


Products made of biomaterials, such as heart valve prostheses, vascular grafts, and patches for vascular and intracardiac plastics, are currently used in cardiovascular surgery. The biological tissue used for prosthetics is the alternation of transverse and longitudinal layers of collagen fibers consisting of type I collagen (75%), elastin (<5%), cell elements, as well as glycoproteins, glycosaminoglycans, and other components of the cell matrix. Chemical modifications of components of a biological tissue allow for retention of its natural architectonics and stability of collagen structure over time, while simultaneously increasing the collagen resistance to enzymatic and mechanical destruction and preventing cellular and immune effects on the part of the recipient organism. Proteins in biological tissues are chemically modified (preserved) by the formation of intramolecular and intermolecular cross-links between the amino groups of amino acid residues in collagen molecules. However, cross-linking increases the calcification of biomaterial, making the tissue more rigid and leading to the rupture of the valve flaps, stenosis (reduced clearance), or insufficiency (a decrease in the closure function) of the heart valves. Calcification can also result from specific physiological features of recipient (the patient who received the artificial organ), the nature of the preserving agent, components of the dead cells, defects of collagen structure, cavities in tissues, and the presence of lipids, elastin fibers, glycosaminoglycans, and so on. The factors that induce calcification of the materials used for prosthetic repair and the corresponding methods for its prevention are reviewed. All methods are conventionally divided into three groups: chemical pretreatment of tissues, modification of the preservation method, and posttreatment of preserved tissues with chemical agents. The mechanisms of the processes underlying the effect of chemical agents on the structures of biological tissues are described. The results of their use in clinical practice and prospects for methods still under development and in preclinical trials are discussed, as well as the reasons why some methods have failed. The advantages and disadvantages of various types of treatments are considered. Variants of new methods for chemical modification of biological materials potentially effective in reducing the risk of calcification are proposed.


chemical modification of proteins biological material in medicine collagen calcification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bokeriya, L.A. and Gudkova, R.G., Serdechno-sosudistaya khirurgiya–2015. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya (Cardiovascular Surgery–2015. Diseases and Congenital Anomalies of the Circulatory System), Moscow: NTsSSKh im. A.N. Bakuleva, 2016.Google Scholar
  2. 2.
    Ovcharenko, E.A., Klyshnikov, K.Yu., Glushkova, T.V., Nushtaev, D.V., Kudryavtseva, Yu.A., and Savrasov, G.V., Med. Tekhn., 2015, no. 5, pp. 1–4.Google Scholar
  3. 3.
    Astapov, D.A., Zhuravleva, I.Yu., Klyshnikov, K.Yu., Shcheglova, N.A., Demidov, D.P., Ovcharenko, E.A., and Zheleznev, S.I., Kompl. Probl. Serd.-Sosud. Zabol., 2013, no. 4, pp. 17–21.Google Scholar
  4. 4.
    Rémi, E., Khelil, N., Centa, I., Roques, C., Ba, M., Medjahed-Hamidi, F., Chaubet, F., Letourneur, D., Lansac, E., and Meddahi-Pellé, A., Pericardial Processing: Challenges, Outcomes and Future Prospects. Biomaterials Science and Engineering, Pignatello, R., Ed., INTECH Open Access Publisher, 2011.Google Scholar
  5. 5.
    Mendoza-Novelo, B. and Cauich-Rodríguez, J.V., Decellularization, Stabilization and Functionalization of Collagenous Tissues Used as Cardiovascular Biomaterials. Birzabith Biomaterials—Physics and Chemistry, 2011.CrossRefGoogle Scholar
  6. 6.
    Hoerstrup, S.P. and Weber, B., Eur. Heart J., 2015, vol. 36, pp. 325–332. doi 10.1093/eurheartj/ehu483CrossRefPubMedGoogle Scholar
  7. 7.
    Keuren, J.F.W., Wielders, S.J.H., Driessen, A., Verhoeven, M., Hendriks, M., and Lindhou, T., Arterioscler. Thromb. Vasc. Biol., 2004, vol. 24, no. 3, pp. 613–620.CrossRefPubMedGoogle Scholar
  8. 8.
    Mirsadraee, S., Wilcox, H.E., Watterson, K.G., Kearney, J.N., Hunt, J., Fisher, J., and Ingham, E., J. Surgical Res., 2007, vol. 143, pp. 407–414.CrossRefGoogle Scholar
  9. 9.
    Sadowski, J., Bartus, K., Kapelak, B., Chung, A., Stapor, M., and Bochenek, M., Kardiologia Polska, 2015, vol. 73, pp. 317–322.CrossRefPubMedGoogle Scholar
  10. 10.
    Parekh, A., Calcification of bovine pericardial aortic heart valves, Electronic Thesis and Dissertation Repository, 2015.Google Scholar
  11. 11.
    Furukawa, K.I., J. Pharmacol. Sci., 2014, vol. 124, pp. 129–137.CrossRefPubMedGoogle Scholar
  12. 12.
    Zeeman, R., Cross-Linking of Collagen-Based Materials, The Netherlands, Enschede, Press: FEBODRUK BV, 1998.Google Scholar
  13. 13.
    Barbarash, O., Rutkovskaya, N., Hryachkova, O., Gruzdeva, O., Uchasova, E., Ponasenko, A., Kondyukova, N., Odarenko, Y., and Barbarash, L., J. Patient Pref. Adher., 2015, vol. 9, pp. 389–399.Google Scholar
  14. 14.
    Gong, G., Ling, Z., Seifter, E., Factor, S.M., and Frater, R.W.M., Eur. J. Cardiothorac. Surg., 1991, vol. 5, pp. 288–293.CrossRefPubMedGoogle Scholar
  15. 15.
    Leopold, J.A., Circ. Cardiovasc. Interv., 2012, vol. 5, pp. 605–614. doi 10.1161/CIRCINTERVENTIONS.112.971028CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fadeeva, I.S., The role of the recipient cells and the disruption of the tissue matrix structure in the mechanism of calcification of vascular and heart valve transplants, Cand. Sci. (Biol.) Dissertation, Pushchino: Inst. Teor. Eksp. Biofiz. RAN, 2013.Google Scholar
  17. 17.
    Oosthuysen, A., Zilla, P.P., Human, P.A., Schmidt, C.A.P., and Bezuidenhout, D., Biomaterials, 2006, vol. 27, pp. 2123–2130.CrossRefPubMedGoogle Scholar
  18. 18.
    Jorge-Herrero, E., Fernández, P., Gutiérrez, M., and Castillo-Olivares, J.L., Biomaterials, 1991, vol. 7, pp. 683–692.CrossRefGoogle Scholar
  19. 19.
    Perrotta, I., Russo, E., Camastra, C., Filice, G., Mizio, G.D., Colosimo, F., Ricci, P., Tripepi, S., Amorosi, A., Triumbari, F., and Donato, G., Histopathology, 2011, vol. 59, pp. 504–513. doi 10.1111/j.1365- 2559.2011.03977.xCrossRefPubMedGoogle Scholar
  20. 20.
    Ronchetti, I., Boraldi, F., Annovi, G., Cianciulli, P., and Quaglino, D., Front. Genet. Syst. Biol., 2013, vol. 4, article 22.Google Scholar
  21. 21.
    Vasin, S.L., Rosanova, I.B., and Sevastianov, V.I., J. Biomed. Mater. Res., 1998, vol. 39, pp. 491–497.CrossRefPubMedGoogle Scholar
  22. 22.
    Lauren, B., Glycosaminoglycan Stabilization in Bovine Pericardium, All Theses, 2007, paper 241.Google Scholar
  23. 23.
    Pathak, C.P., Adams, A.K., Simpson, T., Phillips, R.E. Jr., and Moore, M.A., J. Biomed. Mater. Res. A, 2004, vol. 69, pp. 140–144.CrossRefPubMedGoogle Scholar
  24. 24.
    Maxwell, L., Gavin, J.B., and Barrat-Boy, B.G., Pathology, 1989, vol. 21, pp. 5–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Isenburg, J.C., Simionescu, D.T., and Vyavahare, N.R., Biomaterials, 2005, vol. 26, pp. 1237–1245.CrossRefPubMedGoogle Scholar
  26. 26.
    Olde Damink, L.H.H., Dijkstra, P.J., Van Luyn, M.J.A., Van Wachem, P.B., Nieuwenhuis, P., and Feijen, J., J. Mater. Sci.: Mater. Medicine, 1995, vol. 6, no. 1, pp. 460–472.Google Scholar
  27. 27.
    Ovcharenko, E.A., Vestn. Khir. im. I.I. Grekova, 2014, vol. 173, no. 5, pp. 86–90.Google Scholar
  28. 28.
    Schmidt, C.E. and Baier, J.M., Biomaterials, 2000, vol. 21, pp. 2215–2231.CrossRefPubMedGoogle Scholar
  29. 29.
    Hirsch, D., Drader, J., Thomas, T.J., Schoen, F.J., Levy, J.T., and Levy, R.J., J. Biomed. Mater. Res., 1993, vol. 12, pp. 1477–1484.CrossRefGoogle Scholar
  30. 30.
    Mendoza-Novelo, B., Avila, E.E., Cauich-Rodríguez, J.V., Jorge-Herrero, E., Rojo, F.J., Guinea, G.V., and Mata-Mata, J.L., Acta Biomaterialia, 2011, vol. 7, pp. 1241–1248.CrossRefPubMedGoogle Scholar
  31. 31.
    Moore, M.A., Samsell, B., Wallis, G., Triplett, S., Chen, S., Jones, A.L., and Qin, X., Cell Tissue Banking, 2015, vol. 16, pp. 249–259.CrossRefPubMedGoogle Scholar
  32. 32.
    Neethling, W.M.L., Hodge, A.J., Clode, P., and Glancy, R., J. Cardiovasc. Surg., 2006, vol. 47, p. 711.Google Scholar
  33. 33.
    Vyavahare, N.R., Hirsch, D., Lerner, E., Baskin, J.Z., Zand, R., Schoen, F.J., and Levy, R.J., J. Biomed. Mater. Res., 1998, vol. 40, pp. 577–585.CrossRefPubMedGoogle Scholar
  34. 34.
    Shen, M., Kara-Mostefa, A., Chen, L., Daudon, M., Thevenin, M., Lacour, B., and Carpentier, A., Ann. Thorac. Surg., 2001, vol. 71, pp. 413–419.CrossRefGoogle Scholar
  35. 35.
    Bourgine, P.E., Pippenger, B.E., Todorov, A., Tchang, L., and Martin, I., Biomaterials, 2013, vol. 34, pp. 6099–6108.CrossRefPubMedGoogle Scholar
  36. 36.
    Akatov, V.S., Fesenko, N.I., Solov’ev, V.V., Fadeeva, I.E., Chekanov, A.V., Muratov, R.M., Britikov, D.V., and Sachkov, A.S., Klet. Transplantol. Tkan. Inzh. 2010, vol. 5, pp. 41–46.Google Scholar
  37. 37.
    Manji, R.A., Ekser, B., Menkis, A.H., and Cooper, D.K.C., Xenotransplantation, 2014, vol. 21, pp. 1–10. doi 10.1111/xen.12080CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ovcharenko, E.A., Klyshnikov, K.Y., and Glushkova, T.V., Biomed. Eng., 2016, vol. 49, p. 253. doi 10.1007/s10527- 016-9543-0CrossRefGoogle Scholar
  39. 39.
    Ovcharenko, E.A., Klyshnikov, K.Y., and Nushtaev, D.V., Biophysics, 2015, vol. 60, p. 827. doi 10.1134/S0006350915050152CrossRefGoogle Scholar
  40. 40.
    Rasmussen, K.E. and Albrechtsen, J., Histochemistry, 1974, vol. 38 P, pp. 19–26.CrossRefGoogle Scholar
  41. 41.
    Jorge-Herrero, E., Paez, J.M., and Castillo-Olivares, J.L., J. Appl. Biomater. Biomech., 2005, vol. 3, pp. 67–82.PubMedGoogle Scholar
  42. 42.
    Golomb, G., Schoen, F.J., Smith, M., Linden, J., Dixon, M., and Levy, R.J., Am. J. Pathol., 1987, vol. 127, pp. 122–130.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Okuda, K., Urabe, I., Yamada, Y., and Okada, H., J. Ferment. Bioeng., 1991, vol. 71, pp. 100–105.CrossRefGoogle Scholar
  44. 44.
    Lynn, L.H., Cheung, D.T., and Nimni, M.E., J. Biomed. Mater. Res., 1990, vol. 24, pp. 1185–1201.CrossRefGoogle Scholar
  45. 45.
    Han, B., Jaurequi, J., Tang, B.W., and Nimni, M.E., J. Biomed. Mater. Res., 2003, vol. 65A, pp. 118–124.CrossRefGoogle Scholar
  46. 46.
    Ranly, D.M., Pediatr. Dentistry, 1984, vol. 6, pp. 83–87.Google Scholar
  47. 47.
    Lee, J.M., Pereira, C.A., and Kan, L.W.K., Biomed. Mater. Res., 1994, vol. 28, pp. 981–992.CrossRefGoogle Scholar
  48. 48.
    Meuris, B., Phillips, R., Moore, M.A., and Flameng, W., Artificial Organs, 2003, vol. 27, pp. 537–543.CrossRefPubMedGoogle Scholar
  49. 49.
    Everaerts, F., Torrianni, M., van Luyn, M., van Wachem, P., Feijen, J., and Hendriks, M., Biomaterials, 2004, vol. 25, pp. 5523–5530.CrossRefPubMedGoogle Scholar
  50. 50.
    Zilla, P., Bezuidenhout, D., Torrianni, M., Hendriks, M., and Human, P., J. Heart Valve Dis, 2005, vol. 14, no. 4, pp. 538–545.PubMedGoogle Scholar
  51. 51.
    Olde Damink, L.H., Dijkstra, P.J., van Luyn, M.J., vanWachem, P.B., Nieuwenhuis, P., and Feijen, J., Biomaterials, 1996, vol. 17, no. 8, pp. 765–773.CrossRefPubMedGoogle Scholar
  52. 52.
    Sung, H.W., Chang, W.H., Ma, C.Y., and Lee, M.H., J. Biomed Mater. Res. A, 2003, vol. 64, pp. 427–438.CrossRefPubMedGoogle Scholar
  53. 53.
    Grabarek, Z. and Gergely, J., Anal. Biochem., 1990, vol. 185, pp. 131–135.CrossRefPubMedGoogle Scholar
  54. 54.
    Everaerts, F., Torrianni, M., Hendriks, M., and Feijen, J., J. Biomed Mater. Res. A, 2007, vol. 83, pp. 1176–1183. doi 10.1002/jbm.a.31398CrossRefPubMedGoogle Scholar
  55. 55.
    Jorge-Herrero, E., Fernández, P., Turnay, J., Olmo, N., Calero, P., García, R., Freile, I., and Castillo-Olivares, J.L., Biomaterials, 1999, vol. 20, pp. 539–545.CrossRefPubMedGoogle Scholar
  56. 56.
    Petite, H., Frei, V., and Herbage, D., J. Biomed. Mater. Res., 1994, vol. 28, pp. 159–165.CrossRefPubMedGoogle Scholar
  57. 57.
    Shen, S.H., Sung, H.W., Tu, R., Hata, C., Lin, D., Noishiki, Y., and Quijano, R.C., J. Appl. Biomater., 1994, vol. 5, pp. 159–162.CrossRefPubMedGoogle Scholar
  58. 58.
    Imamura, E., Sawatani, O., Koyanagi, H., Noishiki, Y., and Miyata, T., J. Cardiac Surg., 1989, pp. 450–457.Google Scholar
  59. 59.
    Sato, M., Hiramatsu, Y., Matsushita, S., Sato, S., Watanabe, Y., and Sakakibara, Y., J. Artif. Organs Biomater., 2014, vol. 17, pp. 265–271. doi 10.1007/s10047-014-0768CrossRefGoogle Scholar
  60. 60.
    Xi, T., Ma, J., Tian, W., Lei, X., Long, S., and Xi, B., J. Biomed. Mater. Res., 1992, vol. 26, pp. 1241–1251.CrossRefPubMedGoogle Scholar
  61. 61.
    Barbarash, L.S. and Zhuravleva, I.Yu., Kompl. Probl. Serd.-Sosud. Zabol., 2012, vol. 1, pp. 4–11.Google Scholar
  62. 62.
    Heath, R.J., Clara, Y., Di, S., Hudson, A., and Manock, H., J. Soc. Leather Technol. Chem., 2005, vol. 89, pp. 93–102.Google Scholar
  63. 63.
    Lohre, J.M., Baclig, L., Sagartz, J., Guida, S., Thyagarajan, K., and Tu, R., Artif. Organs, 1992, vol. 16, pp. 630–633.CrossRefPubMedGoogle Scholar
  64. 64.
    Tu, R., Lu, C.L., Thyagarajan, K., Wang, E., Nguyen, H., Shen, S., Hata, C., and Quijano, R.C., J. Biomed Mater. Res., 1993, vol. 27, pp. 3–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Connolly, J.M., Alferiev, I., Clark-Gruel, J.N., Eidelman, N., Sacks, M., Palmatory, E., Kronsteiner, A., Defelice, S., Xu, J., Ohri, R., Narula, N., Vyavahare, N., and Levy, R.J., Am. J. Pathol., 2005, vol. 166, pp. 1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Connolly, J.M., Bakay, M.A., Alferiev, I.S., Gorman, R.C., Gorman, J.H., Kruth, H.S., Ashworth, P.E., Kutty, J.K., Schoen, F.J., Bianco, R.W., and Levy, R.J., Ann. Thorac. Surg., 2011, vol. 92, pp. 858–865.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Alferiev, I.S., Connolly, J.M., and Levy, R.J., J. Organometal. Chem., 2005, vol. 690, pp. 2543–2547.CrossRefGoogle Scholar
  68. 68.
    Sacks, M.S., Gorman, R.C., Hamamoto, H., Connolly, J.M., Gorman, J.H., and Levy, R., Biomaterials, 2007, vol. 28, pp. 5390–5398.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rapoport, H.S., Connolly, J.M., Fulmer, J., Dai, N., Murti, B.H., Gorman, R.C., Gorman, J.H., Alferiev, I., and Levy, R.J., Biomaterials, 2007, vol. 28, pp. 690–699.CrossRefPubMedGoogle Scholar
  70. 70.
    Jarman-Smith, M.L., Bodamyali, T., Stevens, C., Howell, J.A., Horrocks, M., and Chaudhuri, J.B., J. Mater. Sci.: Mater. Med., 2004, vol. 15, pp. 925–932.Google Scholar
  71. 71.
    Olde, DaminkL.H.H., Dijkstra, P.J., Luyn, M.J.A., Wachem, P.B., Niewenhuis, P., and Feijen, J., J. Mater. Sci.: Mater. Med., 1995, vol. 6, pp. 429–434.Google Scholar
  72. 72.
    Jorge-Herrero, E., Garcia, PaezJ.M., and Del Castillo-Olivares Ramos, J.L., J. Appl. Biomater. Biomech., 2005, vol. 3, pp. 67–82.PubMedGoogle Scholar
  73. 73.
    Mendoza-Novelo, B., Alvarado-Castro, D., Mata-Mata, J.L., Cauich-Rodríguez, J.V., Vega-González, A., Jorge-Herrero, E., Rojo, F.J., and Guinea, G.V., Mater. Sci. Eng. C, vol. 33, pp. 2392–2398.Google Scholar
  74. 74.
    Lim, H.G., Kim, S.H., Choi, S.Y., and Kim, Y.J., Eur. J. Cardio-Thorac. Surg., 2012, vol. 41, pp. 383–390.CrossRefGoogle Scholar
  75. 75.
    Sung, H.W., Chen, C.N., Liang, H.F., and Hong, M.H., Biomaterials, 2003, vol. 24, pp. 1335–1347.CrossRefPubMedGoogle Scholar
  76. 76.
    Isenburg, J.C., Simionescu, D.T., and Vyavahare, N.R., Biomaterials, 2004, vol. 25, pp. 3293–3302.CrossRefPubMedGoogle Scholar
  77. 77.
    Isenburg, J.C., Karamchandani, N.V., Simionescu, D.T., and Vyavahare, N.R., Biomaterials, 2006, vol. 27, pp. 3645–3651.PubMedGoogle Scholar
  78. 78.
    Wan-yin, Zhai, Chun-ping, Jia, Hui, Zhao, and Yuansen, Xu, Chin J. Cancer Res., 2011, vol. 23, pp. 99–106.CrossRefGoogle Scholar
  79. 79.
    Ohri, R., Hahn, S.K., Hoffman, A.S., Stayton, P.S., and Giachelli, C.M., J. Biomed. Mater. Res., 2004, vol. 70, pp. 328–334.CrossRefGoogle Scholar
  80. 80.
    Zhuravleva, I.Yu., Glushkova, T.V., Veremeev, A.V., Khryachkova, O.N., Loseva, S.V., and Barbarash, L.S., Patol. Krovoobrashch. Kardiokhir., 2010, vol. 2, pp. 18–21.Google Scholar
  81. 81.
    Webb, C.L., Schoen, F.J., and Levy, R.J., Exp. Mol. Pathol., 1989, vol. 50, pp. 291–302.CrossRefPubMedGoogle Scholar
  82. 82.
    Webb, C.L., Benedict, J.J., Schoen, F.J., Linden, J.A., and Levy, R.J., Ann. Thorac. Surg., 1988, vol. 46, pp. 309–316.CrossRefPubMedGoogle Scholar
  83. 83.
    Gott, J.P., Pan-Chih, DorseyL.M., Jay, J.L., Jett, G.K., Schoen, F.J., Girardot, J.M., and Guyton, R.A., Ann. Thorac. Surg., 1992, vol. 53, pp. 207–216.CrossRefPubMedGoogle Scholar
  84. 84.
    Chen, W., Schoen, F.J., Myers, D.J., and Levy, R.J., J. Biomed. Mater. Res., 1997, vol. 38, pp. 43–48.CrossRefPubMedGoogle Scholar
  85. 85.
    Chang, H.W., Kim, S.H., Kim, K.H., and Kim, Y.J., Interact. Cardiovasc. Thorac. Surg., 2011, vol. 12, pp. 903–907. doi 10.1510/icvts.2010.259747CrossRefPubMedGoogle Scholar
  86. 86.
    Khor, E., Wee, A., Feng, T.C., and Goh, D.C., J. Mater. Sci. Mater. Med., 1998, vol. 9, pp. 39–45.CrossRefPubMedGoogle Scholar
  87. 87.
    Jeong, S., Yoon, E.J., Lim, H.G., Sung, S.C., and Kim, Y.J., BioRes. Open Access, 2013, vol. 2, pp. 98–106.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Vasudev, S.C., Chandy, T., and Sharma, C.P., 1999, vol. 14, pp. 48–66.Google Scholar
  89. 89.
    Vasudev, S.C., Chandy, T., and Sharma, C.P., J. Biomater. Appl., 1997, vol. 11, pp. 430–452.CrossRefPubMedGoogle Scholar
  90. 90.
    Nogueira, G.M., Rodas, A.C.D., Weska, R.F., Aimoli, C.G., Higa, O.Z., Leiner, M.M.A.A., Pitombo, R.N.M., Polakiewicz, B., and Beppu, M.M., Mater. Sci. Eng., 2010, vol. 30, pp. 575–582.CrossRefGoogle Scholar
  91. 91.
    Dahm, M., Rühe, J., Berchthold, B., Prüfer, D., Prucker, O., Chang, B.J., Wallrath, A., and Oelert, H., Biomed. Mater. Eng., 2004, vol. 14, pp. 419–425.PubMedGoogle Scholar
  92. 92.
    Dahm, M., Chang, B.J., Prucker, O., Pierkes, M., Alt, T., Mayer, E., Rühe, J., and Oelert, H., Ann. Thorac. Surg., 2001, vol. 71, pp. 437–440.CrossRefGoogle Scholar
  93. 93.
    Dong, X., Wei, X., Yi, W., Gu, C., Kang, X., Liu, Y., Li, Q., and Yi, D., J. Mater. Sci: Mater. Med., 2009, vol. 20, pp. 2327–2336.Google Scholar
  94. 94.
    Mendoza-Novelo, B. and Cauich-Rodríguez, J.V., J. Appl. Biomater. Biomech., 2009, vol. 7, pp. 123–131.PubMedGoogle Scholar
  95. 95.
    Lee, C., Kim, S.H., Choi, S.H., and Kim, Y.J., Eur. J. Cardio-Thorac. Surg., 2011, vol. 39, pp. 381–387. doi 10.1016/j.ejcts.2010.07.015CrossRefGoogle Scholar
  96. 96.
    Park, S., Kim, S.H., Lim, H.G., Lim, C., and Kim, Y.J., Korean J. Thorac. Cardiovasc. Surg., 2013, vol. 46, pp. 1–13.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Research Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussia

Personalised recommendations