The Synthesis of (1,3,4-Oxadiazol-2-yl)Acrylic Acid Derivatives with Antibacterial and Protistocidal Activities

Abstract

A series of new 1,3,4-oxadiazol-2-yl-acrylic acids was synthesized by cyclization of 4-(2-R-hydrazino)- 4-oxo-2-butenic acids, and their antibacterial and protistocidal activities were studied. The p-substituted benzyl derivatives in the Z-form were shown to exhibit a high protistocidal activity, which exceeded that of the reference drug Baycox (toltrazuril) by several times, whereas the 3-hydroxy-2-naphthyl derivative, in addition to a very high protistocidal activity, also exhibited a moderate antibacterial activity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sova, M., Mini-Rev. Med. Chem., 2012, vol. 12, no. 8, pp. 749–767.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Heleno, S.A., Ferreira, I.C.F.R., Esteves, A.P., Ciric, A., Glamoclija, J., Martins, A., Sokovic, M., and Queiroz, M.J.R.P., Food Chem. Toxicol., 2013, vol. 58, pp. 95–100.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Hu, Y.-H., Chen, C.-M., Xu, L., Cui, Y., Yu, X.-Y., Gao, H.-J., Wang, Q., Liu, K., Shi, Y., and Chen, Q.-X., Postharvest Biol. Technol., 2015, vol. 104, pp. 33–41.

    CAS  Article  Google Scholar 

  4. 4.

    Bisogno, F., Mascoti, L., Sanchez, C., Garibotto, F., Giannini, F., Kurina-Sanz, M., and Enriz, R., J. Agric. Food Chem., 2007, vol. 55, no. 26, pp. 10635–10640.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hoskins, J.A., J. Appl. Toxycol., 1984, vol. 4, no. 6, pp. 283–292.

    CAS  Article  Google Scholar 

  6. 6.

    Li, L., Zhao, P., Hu, J., Liu, J., Liu, Y., Wang, Z., Xia, Y., Dai, Y., and Chen, L., Eur. J. Med. Chem., 2015, vol. 93, pp. 300–307.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Liang, C., Pei, S., Ju, W., Jia, M., Tian, D., Tang, Y., and Mao, G., Eur. J. Med. Chem., 2017, vol. 133, pp. 319–328.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    De, P., Baltas, M., and Bedos-Belval, F., Curr. Med. Chem., 2011, vol. 18, no. 11, pp. 1672–1703.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yen, G.-C., Chen, Y.-L., Sun, F.-M., Chiang, Y.-L., Lu, S.-H., and Weng, C.-J., Eur. J. Pharmac. Sci., 2011, vol. 44, no. 3, pp. 281–287.

    CAS  Article  Google Scholar 

  10. 10.

    Hu, Y.-H., Chen, Q.-X., Cui, Y., Gao, H.-J., Xu, L., Yu, X.-Y., Wang, Y., Yan, C-L., and Wang, Q., Int. J. Biol. Macromol., 2016, vol. 86, pp. 489–495.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhang, H., Zhou, Q., Cao, J., and Wang, Y., Spectrochim. Acta, Part A, 2013, vol. 116, pp. 251–257.

    CAS  Article  Google Scholar 

  12. 12.

    Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Nicolotti, O., and Carotti, A., Eur. J. Med. Chem., 2011, vol. 46, pp. 191–200.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    De Vita, D., Simonetti, G., Pandolfi, F., Costi, R., Di Santo, R., D’Auria, F.D., and Scipione, L., Bioorg. Med. Chem. Lett., 2016, vol. 26, no. 24, pp. 5931–5935.

    Article  PubMed  Google Scholar 

  14. 14.

    Thakkar, J.N., Tiwari, V., and Desai, U.R., Biomacromolecules, 2010, vol. 11, no. 5, pp. 1412–1416.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Brozic, P., Golob, B., Gomboc, N., Rizner, T.L., and Gobec, S., Mol. Cell. Endocrinol., 2006, vol. 248, nos. 1–2, pp. 233–235.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Adisakwattana, S., Sompong, W., Meeprom, A., Ngamukote, S., and Yibchok-anun, S., Int. J. Mol. Sci., 2012, vol. 13, no. 2, pp. 1778–1789.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Adisakwattana, S., Moonsan, P., and Yibchok-anun, S., J. Agric. Food Chem., 2008, vol. 56, no. 17, pp. 7838–7844.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Prabhakar, P.K. and Doble, M., J. Agric. Food Chem., 2011, vol. 59, no. 18, pp. 9835–9844.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Loetchutinat, C., Chau, F., and Mankhetkorn, S., Chem. Pharm. Bull., 2003, vol. 51, pp. 728–730.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Bostrom, J., Hogner, A., Llinas, A., Wellner, E., and Plowright, A.T., J. Med. Chem., 2012, vol. 55, no. 5, pp. 1817–1830.

    Article  PubMed  Google Scholar 

  21. 21.

    Murty, M.S.R., Penthala, R., Buddana, S.K., Prakasham, R.S., Das, P., Polepalli, S., Jain, N., and Bojja, S., Med. Chem. Res., 2014, vol. 23, no. 10, pp. 4579–4594.

    CAS  Article  Google Scholar 

  22. 22.

    Shi, W., Qian, X., Zhang, R., and Song, G., J. Agric. Food Chem., 2001, vol. 49, no. 1, pp. 124–130.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Jha, K.K., Samad, A., Kumar, Ya., Shaharyar, M., Khosa, R.L., Jain, Ja., Kumar, V., and Singh, P., Eur. J. Med. Chem., 2010, vol. 45, no. 11, pp. 4963–4967.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Rozhkov, S.S., Ovchinnikov, K.L., Krasovskaya, G.G., Danilova, A.S., and Kolobov, A.V., Zh. Org. Khim., 2015, vol. 51, no. 7, pp. 1000–1005.

    Google Scholar 

  25. 25.

    Detert, H. and Schollmeier, D., Synthesis, 1999, vol. 51, no. 6, pp. 999–1004.

    Article  Google Scholar 

  26. 26.

    Gutov, O.V., Cryst. Growth Des., 2013, vol. 13, no. 9, pp. 3953–3957.

    CAS  Article  Google Scholar 

  27. 27.

    Le Berre, A., Godin, J., and Garreau, R., Acad. Sci. Ser. 3, vol. 265, p. 570.

  28. 28.

    Siegrist, A.E., Moergeli, E., and Hoelzle, K., US Patent no. 2765304, 1956.

    Google Scholar 

  29. 29.

    Kokunov, Yu.V., Gorbunova, Yu.E., Popov, L.D., Kovalev, V.V., Razgonyaeva, G.A., Kozyukhin, S.A., and Borodkin, S.A., Koord. Khim., 2016, vol. 42, no. 6, pp. 323–328.

    Article  Google Scholar 

  30. 30.

    Fetisov, L.N., Zubenko, A.A., Bodryakov, A.N., and Bodryakova, M.A., in Materialy mezhdunarodnogo parazitologicheskogo simpoziuma “Sovremennye problemy obshchei i chastnoi parazitologii” (Proc. Int. Parasitol. Symp. “Modern Problems of General and Special Parasitology”), 2012, pp. 70–73.

    Google Scholar 

  31. 31.

    Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veschestv (A Guide to Experimental (Preclinical) Study of New Pharmaceuticals), Khabriev, R.U., Ed., Moscow: Meditsina, 2005.

  32. 32.

    Rukovodstvo po provedeniyu doklinicheskikh issledovany lekarstvennykh sredstv (A Guide to Preclinical Drug Research), Mironov, A.N., Ed., Moscow: Grif i K, 2012, part 1.

  33. 33.

    Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam. Metodicheskie ukazaniya. MUK 4.2.1890-04 (Determination of the Sensitivity of Microorganisms to Antibacterial Drugs. Methodical Instructions. MUK 4.2.1890-04), Moscow: Meditsina, 2004.

  34. 34.

    Pershin, G.N., Metody eksperimental’noy khimioterapii (Methods of Experimental Chemotherapy), Moscow: Meditsina, 1971, pp. 100–106.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. D. Popov.

Additional information

Original Russian Text © L.D. Popov, A.A. Zubenko, L.N. Fetisov, Yu.D. Drobin, A.I. Klimenko, A.N. Bodryakov, S.A. Borodkin, I.E. Melkozerova, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 2, pp. 225–231.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, L.D., Zubenko, A.A., Fetisov, L.N. et al. The Synthesis of (1,3,4-Oxadiazol-2-yl)Acrylic Acid Derivatives with Antibacterial and Protistocidal Activities. Russ J Bioorg Chem 44, 238–243 (2018). https://doi.org/10.1134/S1068162018010132

Download citation

Keywords

  • acrylic acid
  • antibacterial activity
  • 1,3,4-oxadiazol
  • protistocidal activity