Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 1, pp 104–111 | Cite as

Mildew Resistance Locus O Gene Cloning, Characterization, and Expression Pattern in Mulberry (Morus multicaulis) and Its Prokaryotic Expression in E. coli



MLO (mildew resistance locus O), which encodes a transmembrane protein 7TM, is considered to be a model plant gene suitable for studying broad-spectrum resistance. It is a negative regulator of powdery mildew resistance and thus has potential applications in plant breeding. In the present paper, a full cDNA sequence encoding MLO was cloned from the leaves of mulberry (Morus multicaulis) based on mulberry expressed sequence tags (EST), homologous cloning technology, and 5′-RLM-RACE using RT-PCR;the sequence was designated MMLO (GenBank accession no. KX683296). The full cDNA was 1943 bp in length with 5′-untranslated region (UTR) of 106 bp, 3′-UTR of 160 bp, and an open reading frame (ORF) of 1677 bp encoding a protein of 558 amino acids. The estimated molecular weight and isoelectric point (pI) of the putative protein were 62.48 kDa and 9.03, respectively. The MMLO protein had Mlo domain and belonged to the Mlo superfamily. Phylogenetic analysis based on the amino acid sequences encoded by the MLO gene from various species showed that mulberry was closely related to Eucalyptus grandis, Ziziphus jujube, and Juglansregia. Quantitative real-time PCR (qRT-PCR) analysis revealed that MMLO was expressed in all the tissues tested, including leaf, bud, fruit, stem, phloem, and xylem in mulberry with the highest expression in the phloem. The expression level of the mRNA increased and significantly changed under drought, cold, and salt stress treatments compared to the normal growth environment. The ORF segment of the MMLO was inserted into the expression plasmid pET-28a(+) to construct a recombinant expression plasmid. SDS-PAGE result revealed that fusion protein was successfully expressed. Overall, these results provide a better understanding of the molecular basis for the signal transduction mechanism during the stress responses in mulberry trees.


mulberry mildew resistance locus O (MLO) cloning characterization expression pattern prokaryotic expression 



mildew resistance locus O


mulberry MLO gene


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wanderley–Nogueira, A.C., Bezerra–Neto, J.P., Kido, E.A., de Araújo, F.T., Amorim, L.L., Crovella, S., and Benko–Iseppon, A.M., Curr. Protein Pept. Sci., 2016, vol. 17, no. 999, pp. 417–423.Google Scholar
  2. 2.
    Baliarsingh, A.K., Samanta, L., and Mohanty, S.S., Life Sci. Leaflets, 2014, vol. 54, pp. 44–54.Google Scholar
  3. 3.
    Kim, M.C., Lee, S.H., Kim, J.K., Chun, H.J., Choi, M.S., Chung, W.S., Moon, B.C., Kang, C.H., Park, C.Y., Yoo, J.H., Kang, Y.H., Koo, S.C., Koo, Y.D., Jung, J.C., Kim, S.T., Schulze-Lefert, P. Lee, S.Y., and Cho, M.J., J. Biol. Chem., 2002, vol. 277, no. 22, pp. 19304–19314.CrossRefPubMedGoogle Scholar
  4. 4.
    Ablazov A. and Tombuloglu, H., Eur. J. Plant Pathol., 2016, vol. 145, no. 2, pp. 239–253.CrossRefGoogle Scholar
  5. 5.
    Bai, Y., Pavan, S., Zheng, Z., Zappel, N.F., Reinstädler, A., Lotti, C., De Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R., Theres, K., and Panstruga, R., Mol. Plant Microbe Interact., 2008, vol. 21, no. 1, pp. 30–39.CrossRefPubMedGoogle Scholar
  6. 6.
    Petersen, S., Lyerly, J.H., Worthington, M.L., Parks, W.R., Cowger, C., Marshall, D.S., Brown–Guedira, G., and Murphy, J.P., Theor. Appl. Genet., 2015, vol. 128, no. 2, pp. 303–312.CrossRefPubMedGoogle Scholar
  7. 7.
    Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., and Schulze-Lefert, P., Cell, 1997, vol. 88, pp. 695–705.CrossRefPubMedGoogle Scholar
  8. 8.
    Piffanelli, P., Zhou, F., Casais, C., Orme, J., Jarosch, B., Schaffrath, U., Collins, N.C., Panstruga, R., and Schulze-Lefert, P., Plant Physiol., 2002, vol. 129, no. 3, pp. 1076–1085.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim, D.S. and Hwang, B.K., Plant J., 2012, vol. 72, no. 5, pp. 843–832.CrossRefPubMedGoogle Scholar
  10. 10.
    Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., von Heijne, G., and Schulze-Lefert, P., J. Biol. Chem., 1999, vol. 274, no. 49, pp. 34993–35004.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaufmann, H., Qiu, X., Wehmeyer, J., and Debener, T., Front Plant Sci., 2012, vol. 3, no. 4, pp. 244–256.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Elliott, C., Zhou, F., Spielmeyer, W., Panstruga, R., and Schulze-Lefert, P., Mol. Plant Microbe. Interact., 2002, vol. 15, no. 10, pp. 1069–1077.CrossRefPubMedGoogle Scholar
  13. 13.
    Shen, Q., Zhao, J., Du, C., Xiang, Y., Cao, J., and Qin, X., Genes Genet. Syst., 2012, vol. 87, no. 2, pp. 89–98.CrossRefPubMedGoogle Scholar
  14. 14.
    Iovieno, P., Andolfo, C., Schiavulli, A., Catalano, D., Ricciardi, L., Frusciante, L., Ercolano, MR., and Pavan, S., BMC Genomics, 2015, vol. 16, no. 1, pp. 1112–1123.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Panstruga, R., Biochem. Soc. Trans., 2005, vol. 33, no. 2, pp. 389–392.CrossRefPubMedGoogle Scholar
  16. 16.
    Rai, M.K., Asthana, P., Singh, S.K., Jaiswal, V.S., and Jaiswal, U., Biotechnol. Adv., 2009, vol. 27, pp. 671–679.CrossRefPubMedGoogle Scholar
  17. 17.
    Natić, M.M., Dabić, D.Č., Papetti, A., Fotirić Akšić, M.M., Ognjanov, V., Ljubojević, M., and Tešić, Ž., North Serbia. Food Chem., 2015, vol. 171, pp. 128–136.PubMedGoogle Scholar
  18. 18.
    Liu, J., Cao, M., Tang, X., Yang, X., Huang, X., and Qin, J., Int. J. Acta Ecologica Sinica, 2016, vol. 36, pp. 22–29.Google Scholar
  19. 19.
    Zheng, H., Han, F., and Le, J., Microgravity Sci. Tec., 2015, vol. 7, pp. 377–386.CrossRefGoogle Scholar
  20. 20.
    Zhao, W., Construction of mulberry cDNA library and analysis of genetic diversity, Postdoctoral Dissertation, Nanjing: Nanjing University, 2008.Google Scholar
  21. 21.
    Jiwan, D., Roalson, E.H., Main, D., and Dhingra, A., Transgenic Res., 2013, vol. 22, no, 6, pp. 1119–1131.CrossRefPubMedGoogle Scholar
  22. 22.
    Ruswandi, D., Carpena, A.L., Lantican, R.M., Hautea, D.M., Canama, A.O., and Raymundo, A.D., Asian J. Agric. Res., 2014, vol. 8, no. 3, pp. 136–149.CrossRefGoogle Scholar
  23. 23.
    Kim, D.S., Choi, H.W., and Hwang, B.K., Planta, 2014, vol. 240, no. 4, pp. 827–839.CrossRefPubMedGoogle Scholar
  24. 24.
    Mohler, V., Slk, H., Zeller, F.J., and Wenzel, G., Plant Breed., 2010. vol. 120, no. 5, pp. 448–450.CrossRefGoogle Scholar
  25. 25.
    Ling, Y.U., Niu, J.S., Chen, P.D., Ma, Z.Q., and Liu, D.J., J. Plant, 2005,vol. 47, no. 2, pp. 214–222.Google Scholar
  26. 26.
    Zhou, S.J., Jing, Z., and Shi, J.L., Genet. Mol. Res., 2013, vol. 12, no. 4, pp. 6565–6578.CrossRefPubMedGoogle Scholar
  27. 27.
    Qiu, X., Jian, H., Wang, Q., Tang, K., and Bao, M., J. Am. Soc. Hortic. Sci., 2015, vol. 140, no. 4, pp. 333–338.Google Scholar
  28. 28.
    Pessin,a S., Pavan, S., Catalano, D., Gallotta, A., Visser, R.G., Bai, Y.L., Malnoy, M., and Schouten, H.J., BMC Genomics, 2014, vol. 15, no. 1, pp. 1–12.CrossRefGoogle Scholar
  29. 29.
    Javid, M., Rosewarne, G.M., Sudheesh, S., Kant, P., Leonforte, A., Lombardi, M., Kennedy, P.R., Cogan, N.O., Slater, A.T., and Kaur, S., Front. Plant Sci., 2015, vol. 6, pp. 917–928.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Feng, P.X., Pan, F.X., Yu–Min, B.I., Guo, X.J., Chen, X., Yang, L., Xu, S.Z., Wang, J.L., Guo, Y.Y., and Yin, Y.B., Chin. Vet. Sci., 2014, vol. 13, no. 6, pp. 618–635.Google Scholar
  31. 31.
    Huangfu, H., Guan, C., Jin, F., and Yin, C., Plant Biotechnol. Rep., 2014, vol. 8, no. 2, pp. 171–181.CrossRefGoogle Scholar
  32. 32.
    Illana, A., Marconi, M., Rodríguez–Romero, J., Xu, P., Dalmay, T., Wilkinson, M.D., Ayllón, M.Á., and Sesma, A., Arch. Virol., 2016, vol. 17, pp. 1–5.Google Scholar
  33. 33.
    Zhen, X.W., uan, D.M., Zhuo, Y.M., Yi, X., Zhou, J., Xu, Z.X., and Zhou, J.L., Int. J Mol. Sci., 2014, vol. 15, no. 2, pp. 2573–2584.Google Scholar
  34. 34.
    Zhao, D., Zhou, C., Sheng, Y., Liang, G., and Tao, J., Plant Mol. Biol. Rep., 2010, vol. 29, no. 2, pp. 345–351.CrossRefGoogle Scholar
  35. 35.
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G., Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., Mol. Biol. Evol., 2007, vol. 24, pp.1596–1599.CrossRefPubMedGoogle Scholar
  37. 37.
    Jiang, X., Yao, F., Li, X., Jia, B., Zhong, G., Zhang, J., Zou, X., and Hou, L., Gene, 2015, vol. 565, pp. 122–129.CrossRefPubMedGoogle Scholar
  38. 38.
    Schmittgen, T.D. and Livak, K.J., Nat. Protoc., 2008, vol. 3, pp. 1101–1108.CrossRefPubMedGoogle Scholar
  39. 39.
    Schagger, H., Nat. Protoc., 2006, vol. 1, pp. 16–22.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiang JiangsuPR China
  2. 2.Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefei AnhuiPR China
  3. 3.Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiang JiangsuPR China

Personalised recommendations