Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 1, pp 52–63 | Cite as

Conformational “Fingerprint” of the Angiotensin-Converting Enzyme

  • O. A. Kost
  • V. E. Tikhomirova
  • O. V. Kryukova
  • A. V. Gusakov
  • N. I. Bulaeva
  • V. V. Evdokimov
  • E. Z. Golukhova
  • S. M. Danilov


The angiotensin-converting enzyme (ACE) is a zinc-dependent metalloproteinase widely occurring in the organism; it metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling. This enzyme is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells, but is also found in a soluble form in biological fluids. In this study, we used purified ACE from lungs, which is mainly produced by endothelial cells of lung capillaries; ACE from heart, produced by endothelial heart cells and, probably, by myofibroblasts; and ACE from seminal fluid, produced by the epithelial cells of the prostate and epididymis. The pattern of binding of a set of 17 mAbs to different conformational epitopes on the surface of two domains of the human ACE significantly differed for ACEs from different organs. This pattern (the conformational “fingerprint” of ACE) reflects the local conformation of the surface of a particular ACE. The differences in the conformational fingerprints of ACEs expressed by different cell types, or even by similar cells but in different organs, can be explained by the posttranslational modification of ACE protein in these organs and, primarily, different glycosylation of N-glycosylation sites Asn25, Asn117, Asn289, Asn666, Asn685, and Asn731. The mass spectrometry of tryptic hydrolyzates of ACEs isolated from different human organs made it possible to reveal, in the composition of different ACEs, N-glycosylation sites that are really occupied by glycans, namely, Asn in positions 82, 117, 416, 648, 666, 685, and 731 in ACE from seminal fluid; Asn in positions 117, 648, 666, and 685 in ACE from lungs; and Asn in positions 117, 480, 666, and 685 in ACE from heart. Differences in the plausible structures of glycans in ACE, in particular, at the Asn666 N-glycosylation site were demonstrated, which can explain the differences in the efficiency of binding of mAbs to ACE from different organs.


angiotensin-converting enzyme monoclonal antibodies glycosylation conformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehlers, M.R.W. and Riordan, J.F., Biochemistry, 1989, vol. 8, pp. 5311–5318.CrossRefGoogle Scholar
  2. 2.
    Sturrock, E.D., Anthony, C.S., and Danilov, S.M., Peptidyl-dipeptidase A/Angiotensin I-converting enzyme, in Handbook of Proteolytic Enzymes, 3rd ed., Oxford: Academic Press, 2012, ch. 98, p. 480.Google Scholar
  3. 3.
    Bernstein, K.E., Ong, F.S., Blackwell, W.-L.B., Shah, K.H., Giani, J.F., Gonzalez-Villalobos, R.A., Shen, X.Z., and Fuchs, S., Pharmacol. Rev., 2013, vol. 65, pp. 1–46.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ramchandran, R., Sen, G.C., Misono, K., and Sen, I., J. Biol. Chem., 1994, vol. 269, pp. 2125–2130.PubMedGoogle Scholar
  5. 5.
    Parkin, E.T., Turner, A.J., and Hooper, N.M., Protein Pept. Lett., 2004, vol. 11, pp. 423–432.CrossRefPubMedGoogle Scholar
  6. 6.
    Soubrier, F., Alhenc-Gelas, F., Hubert, C., Allegrini, J., Johnt, M., Tregeart, G., and Corvol, P., Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, pp. 9386–9390.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Natesh, R., Schwager, S.L.U., Sturrock, E.D., and Acharya, K.R., Nature, 2003, vol. 421, pp. 551–554.CrossRefPubMedGoogle Scholar
  8. 8.
    Corradi, H.R., Schwager, S.L.U., Nchinda, A.T., Sturrock, E.D., and Acharya, K.R., J. Mol. Biol., 2006, vol. 357, pp. 964–974.CrossRefPubMedGoogle Scholar
  9. 9.
    Naperova, I.A., Balyasnikova, I.V., Schwartz, D.E., Watermeyer, J., Sturrock, E.D., Kost, O.A., and Danilov, S.M., J. Proteome Res., 2008, vol. 7, pp. 3396–3411.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, H.L., Lunsdorf, H., Hecht, H.J., and Tsai, H., Micron, 2010, vol. 41, pp. 674–685.CrossRefPubMedGoogle Scholar
  11. 11.
    Danilov, S.M., Gordon, K., Nesterovitch, A.B., Lunsdorf, H., Chen, Z., Castellon, M., Popova, I.A., Kalinin, S., Mendonca, E., Petukhov, P.A., Schwartz, D.E., Minshall, R.D., and Sturrock, E.D., PLoS One, 2011, vol. 6, e 25952.CrossRefGoogle Scholar
  12. 12.
    Danilov, S.M., Jaspard, E., Churakova, T., Towbin, H., Savoie, F.WeiL., and Alhenc-Gelas, F., J. Biol. Chem., 1994, vol. 269, pp. 26806–26814.PubMedGoogle Scholar
  13. 13.
    Balyasnikova, I.V., Sun, Z.-L., Franke, F.E., Berestetskaya, I.V., Chubb, A., Albrecht, R.F.A.II., Sturrock, E.D., and Danilov, S.M., Hybridoma, 2005, vol. 24, pp. 14–26.CrossRefPubMedGoogle Scholar
  14. 14.
    Skirgello, O.E., Balyasnikova, I.V., Binevski, P.V., Sun, Z.L., Baskin, I.I., Palyulin, V.A., Nesterovitch, A.B., Albrecht, R.F., Kost, O.A., and Danilov, S.M., Biochemistry, 2006, vol. 45, pp. 4831–4847.CrossRefPubMedGoogle Scholar
  15. 15.
    Balyasnikova, I.V., Skirgello, O.E., Binevski, P.V., Nesterovich, A.B., Albrecht, R.F.I., Kost, O.A., and Danilov, S.M., J. Proteome Res., 2007, vol. 6, pp. 1580–1594.CrossRefPubMedGoogle Scholar
  16. 16.
    Danilov, S.M., Watermeyer, J.M., Balyasnikova, I.V., Gordon, K., Kugaevskaya, E.V., Elisseeva, Y.E., Albrecht, R.F., and Sturrock, E.D., Biochemistry, 2007, vol. 46, pp. 9019–9031.CrossRefPubMedGoogle Scholar
  17. 17.
    Gordon, K., Balyasnikova, I.V., Nesterovitch, A.B., Schwartz, D.E., Sturrock, E.D., and Danilov, S.M., Tissue Antigens, 2010, vol. 75, pp. 136–150.CrossRefPubMedGoogle Scholar
  18. 18.
    Kryukova, O.V., Tikhomirova, V.E., Golukhova, E.Z., Evdokimov, V.V., Kalantarov, G.F., Trakht, I.N., Schwartz, D.E., Dull, R.O., Gusakov, A.V., Uporov, I.V., Kost, O.A., and Danilov, S.M., PLoS One, 2015, vol. 10, e0143455.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Danilov, S.M., Lunsdorf, H., Akinbi, H.T., Nesterovitch, A.B., Epshtein, Y., Letsiou, E., Kryukova, O.V., Piegeler, T., Golukhova, E.Z., Schwartz, D.E., Dull, R.O., Minshall, R.D., Kost, O.A., and Garcia, J.G., Sci. Rep., vol. 6, p. 34913.Google Scholar
  20. 20.
    Danilov, S.M., Balyasnikova, I.V., Danilova, A.S., Naperova, I.A., Arablinskaya, N.E., Borisov, S.E., Metzger, R., Franke, F.E., Schwartz, D.E., Gachok, I.V., Trakht, I.N., Kost, O.A., and Garcia, J.G.N., J. Proteome Res., 2010, vol. 9, pp. 5782–5793.CrossRefPubMedGoogle Scholar
  21. 21.
    Petrov, M.N., Shilo, V.Y., Tarasov, A.V., Schwartz, D.E., Garcia, J.G.N., Kost, O.A., and Danilov, S.M., PLoS ONE, 2012, vol. 7, pp. 32–36.Google Scholar
  22. 22.
    Metzger, R., Franke, F.F., Bohle, R.M., Alhenc-Gelas, F., and Danilov, S.M., Microvasc. Res., 2011, vol. 81, pp. 206–215.CrossRefPubMedGoogle Scholar
  23. 23.
    Yu, X.C., Sturrock, E.D., Wu, Z., Biemann, K., Ehlers, M.R.W., and Riordan, J.F., J. Biol. Chem., 1997, vol. 272, pp. 3511–3519.CrossRefPubMedGoogle Scholar
  24. 24.
    Ripka, J.E., Ryan, J.W., Valido, F.A., Chung, A.Y., Peterson, C.M., and Urry, R.L., Biochem. Biophys. Res. Commun., 1993, vol. 196, pp. 503–508.CrossRefPubMedGoogle Scholar
  25. 25.
    Krassnigg, F., Niederhauser, H., Fink, E., Frick, J., and Schill, W.B., Int. J. Androl., 1989, vol. 12, pp. 22–28.CrossRefPubMedGoogle Scholar
  26. 26.
    Nassis, L., Frauman, A.G., Oshishi, M., Zhuo, J., Casley, D.J., Johnston, C.I., and Fabiani, M.E., J. Pathol., 2001, vol. 195, pp. 571–579.CrossRefPubMedGoogle Scholar
  27. 27.
    Pauls, K., Metzger, R., Steger, K., Klonosh, T., Danilov, S.M., and Franke, F.E., Andrologia, 2003, vol. 35, pp. 32–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Falkenhahn, M., Franke, F., Bohle, R.M., Zhu, Y.C., Stauss, H.M., Bachmann, S., et al., Hypertension, 1995, vol. 25, pp. 219–226.CrossRefPubMedGoogle Scholar
  29. 29.
    Weber, K.T. and Sun, Y., J. Renin Angiotensin Aldosterone Syst., 2000, vol. 1, pp. 295–303.CrossRefPubMedGoogle Scholar
  30. 30.
    Lui, T., Qian, W.-J., Gritsenko, M.A., Camp, D.G.II., Monroe, M.E., Moore, R.J., and Smith, R.D., J. Proteome Res., 2005, vol. 4, pp. 2070–2080.CrossRefGoogle Scholar
  31. 31.
    Ching, S.F., Hayes, L.W., and Slakey, L.L., Arteriosclerosis, 1983, vol. 3, pp. 581–588.CrossRefPubMedGoogle Scholar
  32. 32.
    Kost, O.A., Bovin, N.V., Chemodanova, E.E., Nasonov, V.V., and Ort, T.A., J. Mol. Recognit., 2000, vol. 13, pp. 360–369.CrossRefPubMedGoogle Scholar
  33. 33.
    Garats, E.V., Nikolskaya, I.I., Binevski, P.V., Pozdneev, V.F., and Kost, O.A., Biochemistry (Moscow), 2001, vol. 66, pp. 429–434.CrossRefGoogle Scholar
  34. 34.
    Danilov, S.M., Balyasnikova, I.V., Albrecht, R.F.A.II., and Kost, O.A., J. Cardiovasc. Pharmacol., 2008, vol. 52, pp. 90–103.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. A. Kost
    • 1
    • 2
  • V. E. Tikhomirova
    • 1
    • 2
  • O. V. Kryukova
    • 1
    • 2
  • A. V. Gusakov
    • 1
  • N. I. Bulaeva
    • 2
  • V. V. Evdokimov
    • 3
  • E. Z. Golukhova
    • 2
  • S. M. Danilov
    • 4
  1. 1.Chemical FacultyMoscow State UniversityMoscowRussia
  2. 2.Bakulev Scientific Center of Cardiovascular SurgeryMoscowRussia
  3. 3.Lopatkin Research Institute of Urology and Interventional RadiologyMoscowRussia
  4. 4.Department of AnesthesiologyUniversity of IllinoisChicagoUSA

Personalised recommendations