Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 1, pp 73–79 | Cite as

Geomagnetic Storm Effects on the Calpain Family Calcium-Dependent Proteases of Some Invertebrate and Fish Species

  • N. P. Kantserova
  • V. V. Krylov
  • L. A. Lysenko
  • N. N. Nemova


The effects of simulation of a geomagnetic storm (GMS) and its components on the calpain family of calcium-dependent proteases of some invertebrate and fish species has been studied. The animals of the experimental groups were exposed to the GMS for 2 h; the control group was kept in conditions of an undisturbed geomagnetic field. It was shown that the calpain family of calcium-dependent proteases of the studied invertebrate and fish representatives reacted to the GMS impact. It was found that the in vivo impact of the GMS and some of its components on the organisms led to a significant calpain activity decrease; the calciumdependent protease specimens isolated from intact invertebrate animals and fish were also significantly inactivated by the impact of these factors. The impact of the GMS on calpain activity was due to the geomagnetic fluctuations within the whole range of a recorded broadband signal. The results complement fundamental ideas about the principles and laws governing the impact of a GMS on living organisms and can be a basis for finding ways to cope with the negative effects of the GMS.


calcium-dependent proteases geomagnetic storm invertebrates fish 



amylolytic activity


geomagnetic storm


geomagnetic field


activity unit


proteolytic activity




sodium salt of ethylenediaminetetraacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goll, D.E., Thompson, V.F., Li, H., Wei, W., and Cong, J., Physiol. Rev., 2003, vol. 83, pp. 731–801.CrossRefPubMedGoogle Scholar
  2. 2.
    Nemova, N.N., Lysenko, L.A., and Kantserova, N.P., Russ. J. Dev. Biol., 2010, vol. 41, no. 5, pp. 318–325.CrossRefGoogle Scholar
  3. 3.
    Sorimachi, H., Hata, S., and Ono, Y., Proc. Jpn. Acad., Ser. B, 2011, vol. 87, pp. 287–327.CrossRefGoogle Scholar
  4. 4.
    Kantserova, N.P., Ushakova, N.V., Krylov, V.V., Lysenko, L.A., and Nemova, N.N., Russ. J. Bioorg. Chem., 2013, vol. 39, no. 4, pp. 373–377.CrossRefGoogle Scholar
  5. 5.
    Kantserova, N.P., Lysenko, L.A., Ushakova, N.V., Krylov, V.V., and Nemova, N.N., Russ. J. Bioorg. Chem., 2015, vol. 41, no. 6, pp. 652–656.CrossRefGoogle Scholar
  6. 6.
    Lednev, V.V., Bioelectromagnetics, 1991, vol. 12, pp. 71–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Belova, N.A. and Panchelyuga, V.A., Biofizika, 2010, vol. 55, no. 4, pp. 750–766.PubMedGoogle Scholar
  8. 8.
    Akasofu, S.I. and Chapman, S., Solar–Terrestrial Physics, Oxford: Clarendon Press, 1972.Google Scholar
  9. 9.
    Ghione, S., Mezzasalma, L., Del Seppia, C., and Papi, F., J. Hum. Hypertens., 1998, vol. 12, pp. 749–754.CrossRefPubMedGoogle Scholar
  10. 10.
    Oraevskii, V.N., Kuleshova, V.P., Gurfinkel’, Yu.I., Guseva, A.V., and Rapoport, S.I., Biofizika, 1998, vol. 43, no. 5, pp. 844–848.PubMedGoogle Scholar
  11. 11.
    Papailiou, M., Mavromichalaki, H., Kudela, K., Stetiarova, J., and Dimitrova, S., Adv. Space Res., 2011, vol. 48, pp. 1545–1550.CrossRefGoogle Scholar
  12. 12.
    Mavromichalaki, H., Papailiou, M., Dimitrova, S., Babayev, E.S., and Loucas, P., Nat. Hazards, 2012, vol. 64, pp. 1447–1459.CrossRefGoogle Scholar
  13. 13.
    Kleimenova, N.G. and Troitskaia, V.A., Biofizika, 1992, vol. 37, pp. 429–438.Google Scholar
  14. 14.
    O’Connor, R.P. and Persinger, M.A., Percept. Mot. Skills, 1999, vol. 88, pp. 391–397.CrossRefPubMedGoogle Scholar
  15. 15.
    Kleimenova, N.G., Kozyreva, O.V., Breus, T.K., and Rapoport, S.I., J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 1759–1764.CrossRefGoogle Scholar
  16. 16.
    Jacobs, J.A., Kato, Y., Matsushita, S., and Troitskaya, V.A., J. Geophys. Res., 1964, vol. 69, pp. 180–181.CrossRefGoogle Scholar
  17. 17.
    Ermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Ermolaev, M.Yu., Kosmich. Issled., 2010, vol. 48, no. 1, pp. 3–32.Google Scholar
  18. 18.
    Zatz, M. and Starling, A., N. Engl. J. Med., 2005, vol. 9, pp. 2413–2423.CrossRefGoogle Scholar
  19. 19.
    Sorimachi, H. and Ono, Y., Cardiovass. Res., 2012, vol. 96, pp. 11–22.CrossRefGoogle Scholar
  20. 20.
    Lysenko, L.A., Kantserova, N.P., Rendakov, N.L., and Nemova, N.N., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 6, pp. 640–648.CrossRefGoogle Scholar
  21. 21.
    Krylov, V.V., Zotov, O.D., and Klain, B.I., Instrument for generation of magnetic fields and compensation for local low-frequency magnetic field, Patent for Useful Model no. RUS 108 640 from May 13, 2011.Google Scholar
  22. 22.
    Bondareva, L.A., Nemova, N.N., and Kyaivyaryainen, E.I., Vnutrikletochnaya Ca2+-zavisimaya proteoliticheskaya sistema zhivotnykh (Intracellular Ca2+-Dependent Proteolytic System of Animals), Moscow: Nauka, 2006.Google Scholar
  23. 23.
    Kantserova, N.P., Ushakova, N.V., Lysenko, L.A., and Nemova, N.N., Zh. Evol. Biokhim. Fiziol., 2010, vol. 46, no. 6, pp. 489–494.Google Scholar
  24. 24.
    Lysenko, L.A., Kantserova, N.P., Ushakova, N.V., and Nemova, N.N., Russ. J. Bioorg. Chem., 2012, vol. 38, no. 3, pp. 282–289.CrossRefGoogle Scholar
  25. 25.
    Krylov, V.V., Zotov, O.D., Klain, B.I., Ushakova, N.V., Kantserova, N.P., Znobishcheva, A.V., Izyumov, Yu.G., Kuz’mina, V.V., Morozov, A.A., Lysenko, L.A., Nemova, N.N., and Osipova, E.A., J. Atmos. Sol.-Terr. Phys., 2014, vol. 110-111, pp. 28–36.CrossRefGoogle Scholar
  26. 26.
    Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsessy i adaptatsii u ryb (Digestive Processes and Adaptation in Fish), St. Petersburg: Gidrometeoizdat, 1993.Google Scholar
  27. 27.
    Golovanova, I.L., Filippov, A.A., Chebotareva, Yu.V., Izyumov, Yu.G., and Krylov, V.V., J. Ichthyol., 2015, vol. 55, no. 4, pp. 590–595.CrossRefGoogle Scholar
  28. 28.
    Golovanova, I.L., Filippov, A.A., Chebotareva, Yu.V., Izyumov, Yu.G., and Krylov, V.V., Trudy KarNTs RAN, 2016, no. 6, pp. 81–90.Google Scholar
  29. 29.
    Kuz’mina, V.V., Ushakova, N.V., Krylov, V.V., and Petrov, D.V., Biol. Bull. (Moscow), 2014, vol. 41, no. 2, pp. 154–160.CrossRefGoogle Scholar
  30. 30.
    Lednev, V.V. and Makarova, O.P., Biofizika, 1996, no. 41, no. 1, pp. 224–232.PubMedGoogle Scholar
  31. 31.
    Shem’i-Zade, A.E., Biofizika, 1992, vol. 37, no. 4, pp. 591–600.Google Scholar
  32. 32.
    Cherry, N., Natural Hazards, 2002, vol. 26, pp. 279–330.CrossRefGoogle Scholar
  33. 33.
    Lednev, V.V., Belova, N.A., Rozhdestvenskaya, Z.E., and Tiras, Kh.P., Geofiz. Prots. Biosfera, 2003, vol. 2, no. 1, pp. 3–11.Google Scholar
  34. 34.
    Krylov, V.V., Bioelectromagnetics, 2017 (in press).Google Scholar
  35. 35.
    Kuz’mina, V.V., Ushakova, N.V., and Krylov, V.V., Biol. Bull. (Moscow), 2015, vol. 42, no. 1, pp. 61–66.CrossRefGoogle Scholar
  36. 36.
    Enns, D.L. and Belcastro, A.N., Can. J. Physiol. Pharmacol., 2006, vol. 84, pp. 601–609.CrossRefPubMedGoogle Scholar
  37. 37.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  38. 38.
    Arthur, J.S.C. and Mykles, D.L., in Calpain. Methods and Protocols, Elce, J.S., Ed., Humana Press, 2000, pp. 109–116.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. P. Kantserova
    • 1
  • V. V. Krylov
    • 2
  • L. A. Lysenko
    • 1
  • N. N. Nemova
    • 1
  1. 1.Institute of BiologyKarelian Research Centre of Russian Academy of SciencesPetrozavodskRussia
  2. 2.Papanin Institute for Biology of Inland Waters of Russian Academy of SciencesBorok, Yaroslavl oblastRussia

Personalised recommendations