Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 1, pp 41–51 | Cite as

Partial Purification and Some Interesting Properties of Glutathione Peroxidase from Liver of Camel (Camelus dromedarius)

  • Abdelbasset Chafik
  • Abdelkhalid Essamadi
  • Safinur Yildirim Çelik
  • Kübra Solak
  • Ahmet Mavi


Climate change and increasing temperatures are global concerns. Well adapted to desert life, the camel (Camelus dromedarius) lives most of its life under high environmental stress and represents an ideal model for studying desert adaptation among mammals. Glutathione peroxidase is the principal antioxidant defense system capable of protecting cells from oxidative stress. Glutathione Peroxidase from camel liver was purified (11.64-fold purification with 1.73% yield) and characterized The molecular weight of the enzyme was estimated to be about 69 kDa by gel filtration and 34 kDa by SDS-PAGE, implying dimeric structure of the protein. An optimum temperature of 47°C and an optimum pH of 7.8 were found. This enzyme is a typical SH-enzyme that is inhibited by D,L-dithiothreitol and β-mercaptoethanol and sensitive to bivalent cations. The enzyme had common specificity toward hydroperoxides and high specificity for reduced glutathione. The Km and Vmax values for hydrogen peroxide and reduced glutathione were 0.57 and 2.10 mM and 1.11 and 0.87 U/mg, respectively. The purified enzyme contained 16 ng of selenium per mg of protein. Our results show that the camel glutathione peroxidse exhibits properties different of those reported for other mammalian species. Lower molecular weight, homodimeric structure, higher optimum temperature, relatively low optimum pH, high affinity for hydrogen peroxide at low concentration of reduced glutathione and very low content of selenium could be explained by adaptation of the camel to living in the desert under intense environmental stress.


adaptation camel desert glutathione peroxidase liver 



reactive oxygen species


glutathione peroxidase


reduced glutathione






5,5′-dithiobis(2-nitrobenzoic acid)


nitro blue tetrazolium






tert-butyl hydroperoxide


benzoyl peroxide




sodium dodecyl sulfate-polyacrylamide gel electrophoresis


ethylenediaminetetraacetic acid




inductively coupled plasma mass spectrometry


trichloroacetic acid


selenium-dependent GPx


non-selenium-dependent GPx


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B., Am. J. Med., 1991, vol. 91, pp. 14–22.CrossRefGoogle Scholar
  2. 2.
    Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O., World Allergy Organ. J., 2012, vol. 5, pp. 9–19.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Little, C. and O’Brien, P.J., Biochem. Biophys. Res. Commun., 1968, vol. 31, pp. 145–150.CrossRefPubMedGoogle Scholar
  4. 4.
    Mills, G.C. and Randall, H.P., J. Biol. Chem., 1958, vol. 232, pp. 589–598.PubMedGoogle Scholar
  5. 5.
    Mills, G.C., J. Biol. Chem., 1957, vol. 229, pp. 189–197.PubMedGoogle Scholar
  6. 6.
    Mills, G.C., Arch. Biochem. Biophys., 1960, vol. 86, pp. 1–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Brigelius-Flohe, R. and Maiorino, M., Biochim. Biophys. Acta, 2013, vol. 1830, pp. 3289–3303.CrossRefPubMedGoogle Scholar
  8. 8.
    Ursini, F., Maiorino, M., Brigelius-Flohe, R., Aumann, A.K., Roveri, A., Schomburg, D., and Flohe, L., Methods Enzymol., 1995, vol. 252, pp. 38–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu, H., Guang, X., Al-Fageeh, M.B., Cao, J., Pan, S., Zhou, H., Zhang, L., Abutarboush, M.H., Xing, Y., Xie, Z., Alshanqeeti, A.S., Zhang, Y., Yao, Q., Al-Shomrani, B.M., Zhang, D., Li, J., Manee, M.M., Yang, Z., Yang, L., Liu, Y., Zhang, J., Altammami, M.A., Wang, S., Yu, L., Zhang, W., Liu, S., Ba, L., Liu, C., Yang, X., Meng, F., Wang, S., Li, L., Li, E., Li, X., Wu, K., Zhang, S., Wang, J., Yin, Y., Yang, H., Al-Swailem, A. M., and Wang, J., Nat. Commun., 2015, vol. 6, pp. 1–9.Google Scholar
  10. 10.
    Warda, M., Prince, A., Kim, H.K., Khafaga, N., Scholkamy, T., Linhardt, R.J., and Jin, H., J. Adv. Res., 2014, vol. 5, pp. 219–242.CrossRefPubMedGoogle Scholar
  11. 11.
    Bengoumi, M. and Faye, B., Sécheresse, 2002, vol. 13, pp. 121–129.Google Scholar
  12. 12.
    Faye, B., Trop. Anim. Health Prod., 2016, vol. 48, pp. 689–692.CrossRefPubMedGoogle Scholar
  13. 13.
    Redwan, El-R.M. and Tabll, A., J. Immunoassay Immunochem., 2007, vol. 28, pp. 267–277.CrossRefGoogle Scholar
  14. 14.
    Abdoun, K.A., Samara, E.M., Okab, A.B., and Al-Haidary, A.I., J. Anim. Vet. Adv., 2012, vol. 11, pp. 769–773.CrossRefGoogle Scholar
  15. 15.
    Faye, B., Saint-Martin, G., Cherrier, R., and Ruffa, A., Comp. Biochem. Physiol. A., 1992, vol. 102, pp. 417–424.CrossRefGoogle Scholar
  16. 16.
    Mousa, H.M., Ali, K.E., and Hume, I.D., Comp. Biochem. Physiol. A, 1983, vol. 74, pp. 715–720.CrossRefPubMedGoogle Scholar
  17. 17.
    de Andrade, K.Q., Moura, F.A., dos Santos, J.M., de Araújo, O.R., de Farias Santos, J.C., and Goulart, M.O., Int. J. Mol.Sci., 2015, vol. 16, pp. 30269–30308.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takahashi, K., Avissar, N., Whitin, J., and Cohen, H., Arch. Biochem. Biophys., 1987, vol. 256, pp. 677–686.CrossRefPubMedGoogle Scholar
  19. 19.
    Bergad, P.L., Rathbun, W.B., and Linder, W., Exp. Eye Res., 1982, vol. 34, pp. 131–144.CrossRefPubMedGoogle Scholar
  20. 20.
    Awasthi, Y.C., Beutler, E., and Srivastava S.K., J. Biol. Chem., 1975, vol. 250, pp. 5144–5149.PubMedGoogle Scholar
  21. 21.
    Nakamura, W., Hosoda, S., and Hayashi, K., Biochim. Biophys. Acta, 1974, vol. 358, pp. 251–261.CrossRefGoogle Scholar
  22. 22.
    Shigeoka, S., Takeda, T., and Hanaoka, T., Biochem. J., 1991, vol. 275, pp. 623–627.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Overbaugh, J.M. and Fall, R., Plant Physiol., 1985, vol. 77, pp. 437–442.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Thompson, J.L., Thomas, P.M., and Schuller, K.A., Comp. Biochem. Physiol. B., 2006, vol. 144, pp. 86–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Nagai, T., Yukimoto, T., and Suzuki, N., Z. Naturforsch. C, 2002, vol. 57, pp. 172–176.CrossRefPubMedGoogle Scholar
  26. 26.
    Singh, A. and Rathaur, S., Biochem. Biophys. Res. Commun., 2005, vol. 331, pp. 1069–1074.CrossRefPubMedGoogle Scholar
  27. 27.
    Aisaka, K., Uwajima, T., and Terada, O., Agric. Biol. Chem., 1983, vol. 47, pp. 1107–1113.Google Scholar
  28. 28.
    Ibrahim, M.A., Mohamed, M.M., Ghazy, A.M., El–Mogy, M., and Masoud, H.M.M., Russ. J. Bioorg. Chem., 2016, vol. 42, pp. 272–281.CrossRefGoogle Scholar
  29. 29.
    Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., and Meinshausen, M., Nature, 2016, vol. 534, pp. 631–639.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsuchihashi, M., Biochem. Z., 1923, vol. 140, pp. 65–74.Google Scholar
  31. 31.
    Stults, F.H., Forstrom, J.W., Chiu, D.T., and Tappel, A.L., Arch. Biochem. Biophys., 1977, vol. 183, pp. 490–497.CrossRefPubMedGoogle Scholar
  32. 32.
    Zakowski, J.J. and Tappel, A.L., Biochim. Biophys. Acta, 1978, vol. 526, pp. 65–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Choe, R.S. and Choi, C.K., Korean J. Zool., 1986, vol. 29, pp. 141–158.Google Scholar
  34. 34.
    Chaudiere, J. and Tappel, A.L., Arch. Biochem. Biophys., 1983, vol. 226, pp. 448–457.CrossRefPubMedGoogle Scholar
  35. 35.
    Shulgin, K.K., Popova, T.N., and Rakhmanova, T.I., Prikl. Biokhim. Mikrobiol., 2008, vol. 44, pp. 276–280.Google Scholar
  36. 36.
    Miwa, T., Adachi, T., Ito, Y., Hirano, K., and Sugiura, M., Chem. Pharm. Bull., 1983, vol. 31, pp. 179–185.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshimura, S., Komatsu, N., and Watanabe, K., Biochim. Biophys. Acta, 1980, vol. 621, pp. 130–137.CrossRefPubMedGoogle Scholar
  38. 38.
    Lyons, D.E., Wilhelmsen, C.E., and Tappel, A.L., J. Liq. Chromatogr., 1981, vol. 4, pp. 2063–2071.CrossRefGoogle Scholar
  39. 39.
    Carmagnol, F., Sinet, P.M., and Jerome, H., Biochim. Biophys. Acta, 1983, vol. 759, pp. 49–57.CrossRefPubMedGoogle Scholar
  40. 40.
    Oh, S., Ganther, H.E., and Hoekstra, W.G., Biochemistry, 1974, vol. 13, pp. 1825–1829.CrossRefPubMedGoogle Scholar
  41. 41.
    Flohe, L., Günzler, W.A., and Schock, H. H., FEBS Lett., 1973, vol. 32, pp. 132–134.CrossRefPubMedGoogle Scholar
  42. 42.
    Schneider, F. and Flohe, L., Hoppe Seylers Z. Physiol. Chem., 1967, vol. 348, pp. 540–552.CrossRefPubMedGoogle Scholar
  43. 43.
    Broderick, D.J., Deagen, J.T., and Whanger, P.D., J. Inorg. Biochem., 1987, vol. 30, pp. 299–308.CrossRefPubMedGoogle Scholar
  44. 44.
    Okamura, N., Iwaki, Y., Hiramoto, S., Tamba, M., Bannai, S., Sugita, Y., Syntin, P., Dacheux, F., and Dacheux, J.L., Biochim. Biophys. Acta, 1997, vol. 1336, pp. 99–109.CrossRefPubMedGoogle Scholar
  45. 45.
    Shichi, H. and Demar, J.C., Exp. Eye Res., 1990, vol. 50, pp. 513–520.CrossRefPubMedGoogle Scholar
  46. 46.
    Awasthi, Y.C., Dao, D.D., Lal, A.K., and Srivastava, S.K., Biochem. J., 1979, vol. 177, pp. 471–476.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chiu, D.T., Stults, F.H., and Tappel, A.L., Biochim. Biophys. Acta, 1976, vol. 445, pp. 558–566.CrossRefPubMedGoogle Scholar
  48. 48.
    Yamashita, Y., Yabu, T., Touhata, K., and Yamashita, M., Fish Sci., 2012, vol. 78, pp. 407–413.CrossRefGoogle Scholar
  49. 49.
    Bell, J.G., Cowey, C.B., and Youngson, A., Biochim. Biophys. Acta, 1984, vol. 795, pp. 91–99.CrossRefPubMedGoogle Scholar
  50. 50.
    Pierce, S. and Tappel, A.L., Biochim. Biophys. Acta, 1978, vol. 523, pp. 27–36.CrossRefPubMedGoogle Scholar
  51. 51.
    Irwin, C., O’Brien, J.K., Chu, P., Townsend-Parchman, J.K., O’Hara, P., and Hunter, F.H., Jr., Arch. Biochem. Biophys., 1980, vol. 205, pp. 122–131.CrossRefGoogle Scholar
  52. 52.
    Chambers, S.J., Lambert, N. and Williamson, G., Int. J. Biochem., 1994, vol. 26, pp. 1279–1286.CrossRefPubMedGoogle Scholar
  53. 53.
    Ursini, F., Maiorino, M., Valente, M., Ferri, L., and Gregolin, C., Biochim. Biophys. Acta, 1982, vol. 710, pp. 197–211.CrossRefPubMedGoogle Scholar
  54. 54.
    Duan, Y.J., Komura, S., Fiszer-Szafarz, B., Szafarz, D., and Yagi, K., J. Biol. Chem., 1988, vol. 263, pp. 19003–19008.PubMedGoogle Scholar
  55. 55.
    Tran, L.T., Inoue, Y., and Kimura, A., Biochim. Biophys. Acta, 1993, vol. 1164, pp. 166–172.CrossRefPubMedGoogle Scholar
  56. 56.
    Ursini, F., Maiorino, M., and Gregolin, C., Biochim. Biophys. Acta, 1985, vol. 839, pp. 62–70.CrossRefPubMedGoogle Scholar
  57. 57.
    Mills, G.C., J. Biol. Chem., 1959, vol. 234, pp. 502–506.PubMedGoogle Scholar
  58. 58.
    Ramos–Martinez, J.I., Launay, J.M., and Dreux, C., Thromb. Res., 1980, vol. 19, pp. 73–83.CrossRefPubMedGoogle Scholar
  59. 59.
    Prohaska, J.R. and Ganther, H.E., J. Neurochem., 1976, vol. 27, pp. 1379–1387.CrossRefPubMedGoogle Scholar
  60. 60.
    Kantola, M., Saaranen, M., and Vanha-Perttula, T., J. Reprod. Fertil., 1988, vol. 83, pp. 785–794.CrossRefPubMedGoogle Scholar
  61. 61.
    Lin, T. and Hultin, H.O., J. Food Biochem., 1978, vol. 2, pp. 39–47.CrossRefGoogle Scholar
  62. 62.
    Ganther, H.E. and Kraus, R.J., Methods Enzymol., 1984, vol. 107, pp. 593–602.CrossRefPubMedGoogle Scholar
  63. 63.
    Martínez, J.I., García, R.D., and Galarza, A.M., Thromb. Res., 1982, vol. 27, pp. 197–203.CrossRefPubMedGoogle Scholar
  64. 64.
    Flohe, L., Loschen, G., Günzler, W.A., and Eichele, E., Hoppe Seylers Z. Physiol. Chem., 1972, vol. 353, pp. 987–999.CrossRefPubMedGoogle Scholar
  65. 65.
    Little, C., Olinescu, R., Reid, K.G., and O’Brien, P.J., J. Biol. Chem., 1970, vol. 245, pp. 3632–3636.PubMedGoogle Scholar
  66. 66.
    Bhattacharya, I.D., Picciano, M.F., and Milner, J.A., Biol. Trace Elem. Res., 1988, vol. 18, pp. 59–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Wendel, A., Meth. Enzymol., 1981, vol. 77, pp. 325–333.CrossRefPubMedGoogle Scholar
  68. 68.
    Tappel, A.L., Meth. Enzymol., 1978, vol. 52, pp. 506–513.CrossRefPubMedGoogle Scholar
  69. 69.
    Cikryt, P., Feuerstein, S., and Wendel, A., Biochem. Pharmacol., 1982, vol. 31, pp. 2873–2877.CrossRefPubMedGoogle Scholar
  70. 70.
    Stone, W.L. and Dratz, E.A., Exp. Eye Res., 1982, vol. 35, pp. 405–412.CrossRefPubMedGoogle Scholar
  71. 71.
    Shreve, M.R., Morrissey, P.G., and O’Brien, P.J., Biochem. J., 1979, vol. 177, pp. 761–763.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Awasthi, Y.C., Dao, D.D., and Saneto, R.P., Biochem. J., 1980, vol. 191, pp. 1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kraus, R.J. and Ganther, H.E., Biochem. Biophys. Res. Commun., 1980, vol. 96, pp. 1116–1122.CrossRefPubMedGoogle Scholar
  74. 74.
    Kraus, R.J., Prohaska, J.R., and Ganther, H.E., Biochim. Biophys. Acta, 1980, vol. 615, pp. 19–26.CrossRefPubMedGoogle Scholar
  75. 75.
    Prohaska, J.R., Oh, S.H., Hoekstra, W.G., and Ganther, H.E., Biochem. Biophys. Res. Commun., 1977, vol. 74, pp. 64–71.CrossRefPubMedGoogle Scholar
  76. 76.
    Jamall, I.S. and Smith, J.C., Arch. Toxicol., 1985, vol. 58, pp. 102–105.CrossRefPubMedGoogle Scholar
  77. 77.
    Jamall, I.S. and Smith, J.C., Toxicol. Appl. Pharmacol., 1985, vol. 80, pp. 33–42.CrossRefPubMedGoogle Scholar
  78. 78.
    Meyer, S.A., House, W.A., and Welch, R.M., J. Nutr., 1982, vol. 112, pp. 954–961.CrossRefPubMedGoogle Scholar
  79. 79.
    Mahmodabady, A.B.Z., Saberi, M., Eimani, H., Pyrzad, J., and Sharifabady, R.R., Yakhteh Med. J., 2006, pp. 172–177.Google Scholar
  80. 80.
    Bem, E.M., Mailer, K., and Elson, C.M., Can. J. Biochem. Cell Biol., 1985, vol. 63, pp. 1212–1216.CrossRefPubMedGoogle Scholar
  81. 81.
    Splittgerber, A.G. and Tappel, A.L., Arch. Biochem. Biophys., 1979, vol. 197, pp.534–542.CrossRefPubMedGoogle Scholar
  82. 82.
    Chafik, A., Essamadi, A., Eddoha, R., Bagri, A., Nasser, B., and Faye, B., J. Camel Pract. Res., 2014, vol. 21, pp. 1–8.CrossRefGoogle Scholar
  83. 83.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.CrossRefPubMedGoogle Scholar
  84. 84.
    Weber, K. and Osborn, M., J. Biol. Chem., 1969, vol. 244, pp. 4406–4412.PubMedGoogle Scholar
  85. 85.
    Davis, B.J., Ann. N. Y. Acad. Sci., 1964, vol. 121, pp. 404–427.CrossRefPubMedGoogle Scholar
  86. 86.
    Rotruck, J.T., Pope A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G., Science, 1973, vol. 179, pp. 588–590.CrossRefPubMedGoogle Scholar
  87. 87.
    Hafeman, D.G., Sunde, R.A., and Hoekstra, W.G., J. Nutr., 1974, vol. 104, pp. 580–587.CrossRefPubMedGoogle Scholar
  88. 88.
    Sedlak, J. and Lindsay, R.H., Anal. Biochem., 1968, vol. 25, pp. 192–205.CrossRefPubMedGoogle Scholar
  89. 89.
    Ellman, G.L., Arch. Biochem. Biophys., 1959, vol. 82, pp. 70–77.CrossRefPubMedGoogle Scholar
  90. 90.
    Lin, C.L., Chen, H.J., and Hou, W.C., Electrophoresis, 2002, vol. 23, pp. 513–516.CrossRefPubMedGoogle Scholar
  91. 91.
    Singh, S., Mondal, P., and Trigun, S.K., PLoS One, 2014, vol. 9, pp. 1–9.Google Scholar
  92. 92.
    Shahin, S., Singh, V.P., Shukla, R.K., Dhawan, A., Gangwar, R.K., Singh, S.P., and Chaturvedi, C.M., Appl. Biochem. Biotechnol., 2013, vol. 169, pp. 172–1751.CrossRefGoogle Scholar
  93. 93.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Abdelbasset Chafik
    • 1
  • Abdelkhalid Essamadi
    • 1
  • Safinur Yildirim Çelik
    • 2
  • Kübra Solak
    • 3
  • Ahmet Mavi
    • 4
  1. 1.Laboratory of Biochemistry and Neuroscience, Team of Applied Biochemistry and Toxicology, Faculty of Science and TechnologyUniversity Hassan FirstSettatMorocco
  2. 2.College of EducationBayburt UniversityBayburtTurkey
  3. 3.Department of Nanoscience and Nanoengineering, Institute of ScienceAtatürk UniversityErzurumTurkey
  4. 4.Chemistry Education, Kazim Karabekir Education FacultyAtatürk UniversityErzurumTurkey

Personalised recommendations