Molecular dynamics simulation study of binding affinity of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA

Abstract

DNA binding position and binding affinity of drugs are important information that helps medicinal chemists in synthesis of new drugs. We used molecular docking and molecular dynamics simulation to reveal binding strength of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA. Molecular docking showed that molecules with more steric hindrance select groove position in DNA structure. Other molecules are intercalated between base pairs of GC and AT. Restrained electrostatic potential (RESP) charges, root mean square deviation (RMSD), and total potential analyses were performed. RMSD and total potential analyses showed that all simulations have stability for MMGBSA analysis. Binding affinity of all drugs was derived via MMGBSA analysis. Thermodynamics analysis showed that binding affinity of groove binding drugs is less than that of intercalating ones. Also, it was found that a linear relationship exists between RESP charges and ΔG pred. Additionally, our results demonstrated the highest affinity for molecules carrying substituent groups of–OCH3 and–CH3.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Fadda, A.A., El-Defrawy, A.M., and El-Habiby, S.A., Am. J. Org. Chem., 2012, vol. 2, pp. 87–96.

    CAS  Article  Google Scholar 

  2. 2.

    Roma, G., Grossi, G., di Braccio, M., et al., Eur. J. Med. Chem., 2008, vol. 43, pp. 1665–1680.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Quintela, J.M., Peinador, C., González, L., et al., Eur. J. Med. Chem., 2003, vol. 38, pp. 265–275.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Aboul-Fadl, T., Bin-Jubair, F.A.S., and Aboul-Wafa O., Eur. J. Med. Chem., 2010, vol. 45, no. 10, pp. 4578–4586.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Baez, A., González, F.A., Vázquez, D., and Waring, M.J., Biochem. Pharmacol., 1983, vol. 32, pp. 2089–2094.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Cao, Y. and He, W.X., Spectrochim. Acta, 1998, pp. 883.

    Google Scholar 

  7. 7.

    Singh, M.P., Joseph, T., Kumar, S., and Lown, J.W., Chem. Res. Toxicol., 1992, vol. 5, p. 597.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    TilakRaj, T. and Ambekar, S.Y., J. Prakt. Chem., 1988, vol. 330, pp. 293–298.

    Article  Google Scholar 

  9. 9.

    Naik, T.R.R., Naik, H.S.B., Raghavedra M., and Naik, S.G.K., Arkivoc, 2006, vol. 2006, pp. 84–94.

    Article  Google Scholar 

  10. 10.

    Becke, A.D., J. Chem. Phys., 1993, vol. 98, pp. 5648–5652.

    CAS  Article  Google Scholar 

  11. 11.

    Frisch, M.J., Trucks, G.W., Schlegel H.B., et al., GAUSSIAN 03, Revision C.02 Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  12. 12.

    Bayly, C.I., Cieplak, P., Cornell, W., and Kollman, P.A., J. Phys. Chem., 1993, vol. 97, pp. 10269–10280.

    CAS  Article  Google Scholar 

  13. 13.

    Mark, A., Argus Lab 4.0.1, Thompson, Planaria Software LLC, Seattle, WA. http://www.arguslab.com/.

  14. 14.

    Skauge, T., Turel, I., Sletten, E., Inorg. Chim. Acta., 2002, vol. 339, pp. 239–247.

    CAS  Article  Google Scholar 

  15. 15.

    Cheatham, T.E., Cieplak, P., and Kollman, P.A., J. Biomol. Struct. Dyn., 1999, vol. 16, pp. 845–862.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Pérez, A., Marchán, I., and Svozil, D., Biophys. J., 2007, vol. 92, pp. 3817–3829.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A., J. Comput. Chem., 2004, vol. 25, p. 1157–1174.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., Intermolecular Forces, Pullman, B., Ed., Netherlands, 1981.

  19. 19.

    Parisi, G. and Yong-shi, Wu, Sci. Sin., 1981, vol. 24, pp. 483–496.

    Google Scholar 

  20. 20.

    Kollman, P.A., Massova, I., and Reyes, C., Acc. Chem. Res., 2000, vol.33, pp.889–897.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wang, J., Hou, T., and Xu, X., Curr. Comput.-Aided Drug Des., 2006, vol.2, pp.287–306.

    CAS  Article  Google Scholar 

  22. 22.

    Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., and Case, D.A., J. Am. Chem. Soc., 1998, vol. 120, pp. 9401–9409.

    CAS  Article  Google Scholar 

  23. 23.

    Srinivasan, J., Miller, J., Kollman, P.A., and Case, D.A., J. Biomol. Struct. Dyn., 1998, vol.16, pp. 671–682.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Cheatham, T.E., Srinivasan, J., Case, D.A., and Kollman, P.A., J. Biomol. Struct. Dyn., 1998, vol. 16, pp. 265–280.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Chong, L.T., Duan, Y., Wang, L., Massova, I., and Kollman, P.A., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 14330–14335.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Reyes, C.M. and Kollman, P.A.,? J. Mol. Biol., 2000, vol. 297, pp. 1145–1158.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Nandeshwarappa, B.P., Aruna Kumar, D.B., Bhojya Naik, H.S., and Mahadevan, K.M., Phosphorus, Sulfu,r Silicon Relat. Elem., 2006, vol. 181, pp. 1997–2003.

    CAS  Article  Google Scholar 

  28. 28.

    Scatchard, G., Ann. N.Y. Acad. Sci., 1949, vol. 51, pp. 660–672.

    CAS  Article  Google Scholar 

  29. 29.

    Peacocke, A.R. and Skerrett, J.N.H., Trans. Faraday Soc.,1956, vol. 52, pp. 261–279.

    CAS  Article  Google Scholar 

  30. 30.

    Naik, T.R.R., Naik, H.S.B., Naik, H.R.P., Bindu, P.J., Harish, B.G., and Krishna, V., Med. Chem., 2009, vol. 5, pp. 411–418.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sargolzaei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sargolzaei, M., Afshar, M. & Nikoofard, H. Molecular dynamics simulation study of binding affinity of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA. Russ J Bioorg Chem 43, 435–442 (2017). https://doi.org/10.1134/S1068162017040057

Download citation

Keywords

  • molecular dynamics
  • docking
  • calfthymus DNA
  • Gibbs free energy of binding