Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 43, Issue 4, pp 435–442 | Cite as

Molecular dynamics simulation study of binding affinity of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA

  • Mohsen SargolzaeiEmail author
  • Mahdi Afshar
  • Hossein Nikoofard
Article
  • 70 Downloads

Abstract

DNA binding position and binding affinity of drugs are important information that helps medicinal chemists in synthesis of new drugs. We used molecular docking and molecular dynamics simulation to reveal binding strength of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA. Molecular docking showed that molecules with more steric hindrance select groove position in DNA structure. Other molecules are intercalated between base pairs of GC and AT. Restrained electrostatic potential (RESP) charges, root mean square deviation (RMSD), and total potential analyses were performed. RMSD and total potential analyses showed that all simulations have stability for MMGBSA analysis. Binding affinity of all drugs was derived via MMGBSA analysis. Thermodynamics analysis showed that binding affinity of groove binding drugs is less than that of intercalating ones. Also, it was found that a linear relationship exists between RESP charges and ΔG pred. Additionally, our results demonstrated the highest affinity for molecules carrying substituent groups of–OCH3 and–CH3.

Keywords

molecular dynamics docking calfthymus DNA Gibbs free energy of binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fadda, A.A., El-Defrawy, A.M., and El-Habiby, S.A., Am. J. Org. Chem., 2012, vol. 2, pp. 87–96.CrossRefGoogle Scholar
  2. 2.
    Roma, G., Grossi, G., di Braccio, M., et al., Eur. J. Med. Chem., 2008, vol. 43, pp. 1665–1680.CrossRefPubMedGoogle Scholar
  3. 3.
    Quintela, J.M., Peinador, C., González, L., et al., Eur. J. Med. Chem., 2003, vol. 38, pp. 265–275.CrossRefPubMedGoogle Scholar
  4. 4.
    Aboul-Fadl, T., Bin-Jubair, F.A.S., and Aboul-Wafa O., Eur. J. Med. Chem., 2010, vol. 45, no. 10, pp. 4578–4586.CrossRefPubMedGoogle Scholar
  5. 5.
    Baez, A., González, F.A., Vázquez, D., and Waring, M.J., Biochem. Pharmacol., 1983, vol. 32, pp. 2089–2094.CrossRefPubMedGoogle Scholar
  6. 6.
    Cao, Y. and He, W.X., Spectrochim. Acta, 1998, pp. 883.Google Scholar
  7. 7.
    Singh, M.P., Joseph, T., Kumar, S., and Lown, J.W., Chem. Res. Toxicol., 1992, vol. 5, p. 597.CrossRefPubMedGoogle Scholar
  8. 8.
    TilakRaj, T. and Ambekar, S.Y., J. Prakt. Chem., 1988, vol. 330, pp. 293–298.CrossRefGoogle Scholar
  9. 9.
    Naik, T.R.R., Naik, H.S.B., Raghavedra M., and Naik, S.G.K., Arkivoc, 2006, vol. 2006, pp. 84–94.CrossRefGoogle Scholar
  10. 10.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, pp. 5648–5652.CrossRefGoogle Scholar
  11. 11.
    Frisch, M.J., Trucks, G.W., Schlegel H.B., et al., GAUSSIAN 03, Revision C.02 Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  12. 12.
    Bayly, C.I., Cieplak, P., Cornell, W., and Kollman, P.A., J. Phys. Chem., 1993, vol. 97, pp. 10269–10280.CrossRefGoogle Scholar
  13. 13.
    Mark, A., Argus Lab 4.0.1, Thompson, Planaria Software LLC, Seattle, WA. http://www.arguslab.com/.Google Scholar
  14. 14.
    Skauge, T., Turel, I., Sletten, E., Inorg. Chim. Acta., 2002, vol. 339, pp. 239–247.CrossRefGoogle Scholar
  15. 15.
    Cheatham, T.E., Cieplak, P., and Kollman, P.A., J. Biomol. Struct. Dyn., 1999, vol. 16, pp. 845–862.CrossRefPubMedGoogle Scholar
  16. 16.
    Pérez, A., Marchán, I., and Svozil, D., Biophys. J., 2007, vol. 92, pp. 3817–3829.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A., J. Comput. Chem., 2004, vol. 25, p. 1157–1174.CrossRefPubMedGoogle Scholar
  18. 18.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., Intermolecular Forces, Pullman, B., Ed., Netherlands, 1981.Google Scholar
  19. 19.
    Parisi, G. and Yong-shi, Wu, Sci. Sin., 1981, vol. 24, pp. 483–496.Google Scholar
  20. 20.
    Kollman, P.A., Massova, I., and Reyes, C., Acc. Chem. Res., 2000, vol.33, pp.889–897.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang, J., Hou, T., and Xu, X., Curr. Comput.-Aided Drug Des., 2006, vol.2, pp.287–306.CrossRefGoogle Scholar
  22. 22.
    Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., and Case, D.A., J. Am. Chem. Soc., 1998, vol. 120, pp. 9401–9409.CrossRefGoogle Scholar
  23. 23.
    Srinivasan, J., Miller, J., Kollman, P.A., and Case, D.A., J. Biomol. Struct. Dyn., 1998, vol.16, pp. 671–682.CrossRefPubMedGoogle Scholar
  24. 24.
    Cheatham, T.E., Srinivasan, J., Case, D.A., and Kollman, P.A., J. Biomol. Struct. Dyn., 1998, vol. 16, pp. 265–280.CrossRefPubMedGoogle Scholar
  25. 25.
    Chong, L.T., Duan, Y., Wang, L., Massova, I., and Kollman, P.A., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 14330–14335.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reyes, C.M. and Kollman, P.A.,? J. Mol. Biol., 2000, vol. 297, pp. 1145–1158.CrossRefPubMedGoogle Scholar
  27. 27.
    Nandeshwarappa, B.P., Aruna Kumar, D.B., Bhojya Naik, H.S., and Mahadevan, K.M., Phosphorus, Sulfu,r Silicon Relat. Elem., 2006, vol. 181, pp. 1997–2003.CrossRefGoogle Scholar
  28. 28.
    Scatchard, G., Ann. N.Y. Acad. Sci., 1949, vol. 51, pp. 660–672.CrossRefGoogle Scholar
  29. 29.
    Peacocke, A.R. and Skerrett, J.N.H., Trans. Faraday Soc.,1956, vol. 52, pp. 261–279.CrossRefGoogle Scholar
  30. 30.
    Naik, T.R.R., Naik, H.S.B., Naik, H.R.P., Bindu, P.J., Harish, B.G., and Krishna, V., Med. Chem., 2009, vol. 5, pp. 411–418.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Mohsen Sargolzaei
    • 1
    Email author
  • Mahdi Afshar
    • 2
  • Hossein Nikoofard
    • 1
  1. 1.Department of ChemistryShahrood University of TechnologyShahroodIran
  2. 2.Materials Simulation Laboratory, Department of PhysicsIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations