Skip to main content
Log in

Molecular dynamics simulation study of binding affinity of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

DNA binding position and binding affinity of drugs are important information that helps medicinal chemists in synthesis of new drugs. We used molecular docking and molecular dynamics simulation to reveal binding strength of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA. Molecular docking showed that molecules with more steric hindrance select groove position in DNA structure. Other molecules are intercalated between base pairs of GC and AT. Restrained electrostatic potential (RESP) charges, root mean square deviation (RMSD), and total potential analyses were performed. RMSD and total potential analyses showed that all simulations have stability for MMGBSA analysis. Binding affinity of all drugs was derived via MMGBSA analysis. Thermodynamics analysis showed that binding affinity of groove binding drugs is less than that of intercalating ones. Also, it was found that a linear relationship exists between RESP charges and ΔG pred. Additionally, our results demonstrated the highest affinity for molecules carrying substituent groups of–OCH3 and–CH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fadda, A.A., El-Defrawy, A.M., and El-Habiby, S.A., Am. J. Org. Chem., 2012, vol. 2, pp. 87–96.

    Article  CAS  Google Scholar 

  2. Roma, G., Grossi, G., di Braccio, M., et al., Eur. J. Med. Chem., 2008, vol. 43, pp. 1665–1680.

    Article  CAS  PubMed  Google Scholar 

  3. Quintela, J.M., Peinador, C., González, L., et al., Eur. J. Med. Chem., 2003, vol. 38, pp. 265–275.

    Article  CAS  PubMed  Google Scholar 

  4. Aboul-Fadl, T., Bin-Jubair, F.A.S., and Aboul-Wafa O., Eur. J. Med. Chem., 2010, vol. 45, no. 10, pp. 4578–4586.

    Article  CAS  PubMed  Google Scholar 

  5. Baez, A., González, F.A., Vázquez, D., and Waring, M.J., Biochem. Pharmacol., 1983, vol. 32, pp. 2089–2094.

    Article  CAS  PubMed  Google Scholar 

  6. Cao, Y. and He, W.X., Spectrochim. Acta, 1998, pp. 883.

    Google Scholar 

  7. Singh, M.P., Joseph, T., Kumar, S., and Lown, J.W., Chem. Res. Toxicol., 1992, vol. 5, p. 597.

    Article  CAS  PubMed  Google Scholar 

  8. TilakRaj, T. and Ambekar, S.Y., J. Prakt. Chem., 1988, vol. 330, pp. 293–298.

    Article  Google Scholar 

  9. Naik, T.R.R., Naik, H.S.B., Raghavedra M., and Naik, S.G.K., Arkivoc, 2006, vol. 2006, pp. 84–94.

    Article  Google Scholar 

  10. Becke, A.D., J. Chem. Phys., 1993, vol. 98, pp. 5648–5652.

    Article  CAS  Google Scholar 

  11. Frisch, M.J., Trucks, G.W., Schlegel H.B., et al., GAUSSIAN 03, Revision C.02 Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  12. Bayly, C.I., Cieplak, P., Cornell, W., and Kollman, P.A., J. Phys. Chem., 1993, vol. 97, pp. 10269–10280.

    Article  CAS  Google Scholar 

  13. Mark, A., Argus Lab 4.0.1, Thompson, Planaria Software LLC, Seattle, WA. http://www.arguslab.com/.

  14. Skauge, T., Turel, I., Sletten, E., Inorg. Chim. Acta., 2002, vol. 339, pp. 239–247.

    Article  CAS  Google Scholar 

  15. Cheatham, T.E., Cieplak, P., and Kollman, P.A., J. Biomol. Struct. Dyn., 1999, vol. 16, pp. 845–862.

    Article  CAS  PubMed  Google Scholar 

  16. Pérez, A., Marchán, I., and Svozil, D., Biophys. J., 2007, vol. 92, pp. 3817–3829.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A., J. Comput. Chem., 2004, vol. 25, p. 1157–1174.

    Article  CAS  PubMed  Google Scholar 

  18. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., Intermolecular Forces, Pullman, B., Ed., Netherlands, 1981.

  19. Parisi, G. and Yong-shi, Wu, Sci. Sin., 1981, vol. 24, pp. 483–496.

    Google Scholar 

  20. Kollman, P.A., Massova, I., and Reyes, C., Acc. Chem. Res., 2000, vol.33, pp.889–897.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, J., Hou, T., and Xu, X., Curr. Comput.-Aided Drug Des., 2006, vol.2, pp.287–306.

    Article  CAS  Google Scholar 

  22. Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., and Case, D.A., J. Am. Chem. Soc., 1998, vol. 120, pp. 9401–9409.

    Article  CAS  Google Scholar 

  23. Srinivasan, J., Miller, J., Kollman, P.A., and Case, D.A., J. Biomol. Struct. Dyn., 1998, vol.16, pp. 671–682.

    Article  CAS  PubMed  Google Scholar 

  24. Cheatham, T.E., Srinivasan, J., Case, D.A., and Kollman, P.A., J. Biomol. Struct. Dyn., 1998, vol. 16, pp. 265–280.

    Article  CAS  PubMed  Google Scholar 

  25. Chong, L.T., Duan, Y., Wang, L., Massova, I., and Kollman, P.A., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 14330–14335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reyes, C.M. and Kollman, P.A.,? J. Mol. Biol., 2000, vol. 297, pp. 1145–1158.

    Article  CAS  PubMed  Google Scholar 

  27. Nandeshwarappa, B.P., Aruna Kumar, D.B., Bhojya Naik, H.S., and Mahadevan, K.M., Phosphorus, Sulfu,r Silicon Relat. Elem., 2006, vol. 181, pp. 1997–2003.

    Article  CAS  Google Scholar 

  28. Scatchard, G., Ann. N.Y. Acad. Sci., 1949, vol. 51, pp. 660–672.

    Article  CAS  Google Scholar 

  29. Peacocke, A.R. and Skerrett, J.N.H., Trans. Faraday Soc.,1956, vol. 52, pp. 261–279.

    Article  CAS  Google Scholar 

  30. Naik, T.R.R., Naik, H.S.B., Naik, H.R.P., Bindu, P.J., Harish, B.G., and Krishna, V., Med. Chem., 2009, vol. 5, pp. 411–418.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sargolzaei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargolzaei, M., Afshar, M. & Nikoofard, H. Molecular dynamics simulation study of binding affinity of thieno[2,3-b]benzo[1,8]naphthyridine derivatives to DNA. Russ J Bioorg Chem 43, 435–442 (2017). https://doi.org/10.1134/S1068162017040057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162017040057

Keywords

Navigation