Skip to main content

A synthetic fragment 60–70 of the receptor for advanced glycation end products exhibits a therapeutic effect in an animal model of Alzheimer’s disease

Abstract

Six synthetic peptides overlapping a fragment 60–76 of the receptor for advanced glycation end products (RAGE) were studied on a protective effect on spatial memory of animals in the experimental model of Alzheimer’s disease. It was shown that only a peptide corresponding to the fragment 60–70 of RAGE exhibits a therapeutic activity. Intranasal administration of this peptide into bulbectomized mice, which develop neurodegenerative features of the Alzheimer type, completely protects animal memory. Thus, it was found that the N-terminal region (60–70) within the peptide sequence 60–76 of RAGE is responsible for the revealed protective effect. The synthetic peptide RAGE-(60–70) could be the basis for the development of a new drug for the treatment of Alzheimer’s disease.

This is a preview of subscription content, access via your institution.

Abbreviations

AD:

Alzheimer’s disease

RAGE:

receptor for advanced glycation end products

MALDI:

matrix-assisted laser desorption/ionization

BE-animals:

animals subjected to olfactory bulbectomy

SO:

sham-operated animals

References

  1. Butterfield, D.A., Griffin, S., Munch, G., and Pasinetti, G.M., J. Alzheimer’s Disease, 2002, vol. 4, pp. 193–201.

    CAS  Article  Google Scholar 

  2. Leclerc, E., Sturchler, E., and Vetter, S., Cardiovasc. Psychiatry Neurol., 2010, Article ID 539581. doi 10.1155/2010/539581

    Google Scholar 

  3. Ding, Q. and Keller, J.N., Biochim. Biophys. Acta, 2005, vol. 1746, pp. 18–27.

    CAS  Article  PubMed  Google Scholar 

  4. Fritz, G., Trends Biochem. Sci., 2011, vol. 36, no. 12, pp. 625–632.

    CAS  Article  PubMed  Google Scholar 

  5. Jensen, J.L., Indurthi, V.S.K., Neau, D.B., Vetter, S.W., and Colberta, C.L., Acta Cryst., 2015, vol. D71, pp. 1176–1183.

    Google Scholar 

  6. Sorci, G., Bianchi, R., Riuzzi, F., Tubaro, C., Arcuri, C., Giambanco, I., and Donato, R., Cardiovasc. Psychiatry Neurol., 2010, Article ID 656481. doi 10.1155/2010/656481

    Google Scholar 

  7. Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., and Munch, G., Neurobiol. Aging, 2011, vol. 32, pp. 763–777.

    CAS  Article  PubMed  Google Scholar 

  8. Donato, R., Cannon, B.R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D.J., and Geczy, C.L., Curr. Mol. Med., 2013, vol. 13, no. 1, pp. 24–57.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cheng, C., Tsuneyama, K., Kominami, R., Shinohara, H., Sakurai, S., Yonekura, H., Watanabe, T., Takano, Y., Yamamoto, H., and Yamamoto, Y., Mod. Pathol., 2005, vol. 18, pp. 1385–1396.

    CAS  Article  PubMed  Google Scholar 

  10. Yan, S.S., Chen, D., Yan, S., Guo, L., Du, H., and Chen, J.X., Front. Biosci. (Schol Ed.), 2012, vol. 4, pp. 240–250.

    Article  Google Scholar 

  11. Ding, Q. and Keller, J.N., Biochim. Biophys. Acta, 2005, vol. 1746, pp. 18–27.

    CAS  Article  PubMed  Google Scholar 

  12. Volpina, O.M., Koroev, D.O., Volkova, T.D., Kamynina, A.V., Filatova, M.P., Zaporozhskaya, Ya.V., Samokhin, A.N., Aleksandrova, I.Yu., and Bobkova, N.V., Russ. J. Bioorg. Chem., 2015, vol. 41, no. 6, pp. 638–644.

    CAS  Article  Google Scholar 

  13. Hozumi, S., Nakagawasai, O., Tan-No, K., Niijima, F., Yamadera, F., Murata, A., Arai, Y., Yasuhara, H., and Tadano, T., Behav. Brain Res., 2003, vol. 138, pp. 9–15.

    CAS  Article  PubMed  Google Scholar 

  14. Bobkova, N.V., Nesterova, I.V., Dana, R., Dana, E., Nesterov, V.I., Aleksandrova, Y., Medvinskaya, N.I., and Samokhin, A.N., Neurosci. Behav. Physiol., 2004, vol. 34, no. 7, pp. 671–676.

    CAS  Article  PubMed  Google Scholar 

  15. Aleksandrova, I.Yu., Kuvichkin, V.V., Kashparov, I.A., Medvinskaya, N.I., Nesterova, I.V., Lunin, S.M., Samokhin, A.N., and Bobkova, N.V., Biochemistry (Moscow), 2004, vol. 69, no. 2, pp. 176–180.

    CAS  Article  Google Scholar 

  16. Vol’pina, O.M., Medvinskaia, N.I., Kamynina, A.V., Zaporozhskaia, Ia.V., Aleksandrova, I.Iu., Koroev, D.O., Samokhin, A.N., Volkova, T.D., Arsen’ev, A.S., and Bobkova, N.V., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 4, pp. 451–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Koroev.

Additional information

Original Russian Text © D.O. Koroev, O.M. Volpina, T.D. Volkova, A.V. Kamynina, M.P. Filatova, S.M. Balasanyants, A.N. Samokhin, N.V. Bobkova, 2017, published in Bioorganicheskaya Khimiya, 2017, Vol. 43, No. 2, pp. 174–179.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koroev, D.O., Volpina, O.M., Volkova, T.D. et al. A synthetic fragment 60–70 of the receptor for advanced glycation end products exhibits a therapeutic effect in an animal model of Alzheimer’s disease. Russ J Bioorg Chem 43, 150–154 (2017). https://doi.org/10.1134/S1068162017020066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162017020066

Keywords

  • Alzheimer’s disease
  • receptor for advanced glycation end products
  • beta-amyloid
  • synthetic peptides
  • intranasal administration