Skip to main content

Self-organization of a chromatin fibril into topologically-associated domains

Abstract

A number of recent experimental approaches demonstrated that a three-dimensional organization of the eukaryotic genome play an important role in the regulation of its activity. One of the most important results was a discovery of the genome separation into relatively independent topologically-associated domains (TADs). They restricted the action area of regulatory elements, i.e., they simultaneously were regulatory domains of the genome. In this connection, an understanding of the molecular mechanism of the TAD formation has become a very topical problem. Here, we review and discuss our recent data which demonstrated that the TAD formation was directed by simple physical laws and was based on establishing multiple internucleosomal contacts.

This is a preview of subscription content, access via your institution.

Abbreviations

TAD:

topologically-associated domain of chromatin

DPD:

dissipative particle dynamics

RNAP II:

RNA-polymerase II

References

  1. Scherrer, K., Adv. Exp. Med. Biol., 1974, vol. 44, pp. 161–219.

    Google Scholar 

  2. Scherrer, K., in Kolodny, Ed., Boca Raton, Florida: CRC Press Inc., 1980, vol. 1, pp. 57–129.

    Google Scholar 

  3. de Wit, E. and de Laat, W., Genes Dev., 2012, vol. 26, pp. 11–24.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cullen, K.E., Kladde, M.P., and Seyfred, M.A., Science, 1993, vol. 261, pp. 203–206.

    CAS  Article  PubMed  Google Scholar 

  5. Gothard, L.Q., Hibbard, J.C., and Seyfred, M.A., Mol. Endocrinol., 1996, vol. 10, pp. 185–195.

    CAS  PubMed  Google Scholar 

  6. Dekker, J., Rippe, K., Dekker, M., and Kleckner, N., Science, 2002, vol. 295, pp. 1306–1311.

    CAS  Article  PubMed  Google Scholar 

  7. Lieberman-Aiden, E., et al., Science, 2009, vol. 326, pp. 289–293.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B., Nature, 2012, vol. 485, pp. 376–380.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., Gribnau, J., Barillot, E., Bluthgen, N., Dekker, J., and Heard, E., Nature, 2012, vol. 485, pp. 381–385.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G., Cell, 2012, vol. 148, pp. 458–472.

    CAS  Article  PubMed  Google Scholar 

  11. Hou, C., Li, L., Qin, Z.S., and Corces, V.G., Mol. Cell, 2012, vol. 48, pp. 471–484.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fraser, J., et al., Mol. Syst. Biol., 2015, vol. 11, p. 852.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ulianov, S.V., Gavrilov, A.A., and Razin, S.V., Int. Rev. Cell Mol. Biol., 2015, vol. 315, pp. 183–244.

    Article  PubMed  Google Scholar 

  14. Petrov, A., Allinne, J., Pirozhkova, I., Laoudj, D., Lipinski, M., and Vassetzky, Y.S., Genome Res., 2008, vol. 18, pp. 39–45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Petrov, A., Pirozhkova, I., Carnac, G., Laoudj, D., Lipinski, M., and Vassetzky, Y.S., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 6982–6987.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Lupianez, D.G., et al., Cell, 2015, vol. 161, pp. 1012–1025.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Ji, X., Dadon, D.B., Powell, B.E., Fan, Z.P., Borges-Rivera, D., Shachar, S., Weintraub, A.S., Hnisz, D., Pegoraro, G., Lee, T.I., Misteli, T., Jaenisch, R., and Young, R.A., Cell Stem. Cell, 2016, vol. 18, pp. 262–275.

    CAS  Article  PubMed  Google Scholar 

  18. Lupianez, D.G., Spielmann, M., and Mundlos, S., Trends Genet., 2016, vol. 32, pp. 225–237.

    CAS  Article  PubMed  Google Scholar 

  19. Ibn-Salem, J., et al., Genome Biol., 2014, vol. 15, p. 423.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Symmons, O., Uslu, V.V., Tsujimura, T., Ruf, S., Nassari, S., Schwarzer, W., Ettwiller, L., and Spitz, F., Genome Res., 2014, vol. 24, pp. 390–400.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Pope, B.D., et al., Nature, 2014, vol. 515, pp. 402–405.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Remeseiro, S., Hornblad, A., and Spitz, F., Wiley Interdiscip. Rev. Dev. Biol., 2015.

    Google Scholar 

  23. Lonfat, N. and Duboule, D., FEBS Lett., 2015, vol. 589, pp. 2869–2876.

    CAS  Article  PubMed  Google Scholar 

  24. Dileep, V., Rivera-Mulia, J.C., Sima, J., and Gilbert, D.M., Cold Spring Harb. Symp. Quant. Biol., 2015, vol. 80, pp. 53–63.

    Article  PubMed  Google Scholar 

  25. Le Dily, F., Bau, D., Pohl, A., Vicent, G.P., Serra, F., Soronellas, D., Castellano, G., Wright, R.H., Ballare, C., Filion, G., Marti-Renom, M.A., and Beato, M., Genes Dev., 2014, vol. 28, pp. 2151–2162.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Le Dily, F. and Beato, M., FEBS Lett., 2015, vol. 589, pp. 2885–2892.

    Article  PubMed  Google Scholar 

  27. Filippova, D., Patro, R., Duggal, G., and Kingsford, C., Algorithms Mol. Biol., 2014, vol. 9, p. 14.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ulianov, S.V., Khrameeva, E.E., Gavrilov, A.A., Flyamer, I.M., Kos, P., Mikhaleva, E.A., Penin, A.A., Logacheva, M.D., Imakaev, M.V., Chertovich, A., Gelfand, M.S., Shevelyov, Y.Y., and Razin, S.V., Genome Res., 2016, vol. 26, pp. 70–84.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van Bortle, K. and Corces, V.G., Curr. Opin. Genet. Dev., 2013, vol. 23, pp. 212–218.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Van Bortle, K., Nichols, M.H., Li, L., Ong, C.T., Takenaka, N., Qin, Z.S., and Corces, V.G., Genome Biol., 2014, vol. 15, p. R82.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhimulev, I.F., Zykova, T.Y., Goncharov, F.P., Khoroshko, V.A., Demakova, O.V., Semeshin, V.F., Pokholkova, G.V., Boldyreva, L.V., Demidova, D.S., Babenko, V.N., Demakov, S.A., and Belyaeva, E.S., PLoS ONE, 2014, vol. 9, p. e101631.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Phillips-Cremins, J.E., et al., Cell, 2013, vol. 153, pp. 1281–1295.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Weintraub, H. and Groudine, M., Science, 1976, vol. 73, pp. 848–856.

    Article  Google Scholar 

  34. Maeshima, K., Imai, R., Hikima, T., and Joti, Y., Methods, 2014, vol. 70, pp. 154–161.

    CAS  Article  PubMed  Google Scholar 

  35. Maeshima, K., Imai, R., Tamura, S., and Nozaki, T., Chromosoma, 2014, vol. 123, pp. 225–237.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Maeshima, K., Rogge, R., Tamura, S., Joti, Y., Hikima, T., Szerlong, H., Krause, C., Herman, J., Seidel, E., DeLuca, J., Ishikawa, T., and Hansen, J.C., EMBO J., 2016, no. 10, pp. 1115–11132.

    Article  Google Scholar 

  37. Schalch, T., Duda, S., Sargent, D.F., and Richmond, T.J., Nature, 2005, vol. 436, pp. 138–141.

    CAS  Article  PubMed  Google Scholar 

  38. Kalashnikova, A.A., Porter-Goff, M.E., Muthurajan, U.M., Luger, K., and Hansen, J.C., J. R. Soc. Interface, 2013, vol. 10, p. 20121022.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sinha, D. and Shogren-Knaak, M.A., J. Biol. Chem., 2010, vol. 285, pp. 16572–16581.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Pepenella, S., Murphy, K.J., and Hayes, J.J., Chromosoma, 2014, vol. 123, pp. 3–13.

    CAS  Article  PubMed  Google Scholar 

  41. Shahbazian, M.D. and Grunstein, M., Annu. Rev. Biochem., 2007, vol. 76, pp. 75–100.

    CAS  Article  PubMed  Google Scholar 

  42. Allahverdi, A., Yang, R., Korolev, N., Fan, Y., Davey, C.A., Liu, C.F., and Nordenskiold, L., Nucleic Acids Res., 2011, vol. 39, pp. 1680–1691.

    CAS  Article  PubMed  Google Scholar 

  43. Gavrilov, A.A., Kudryavtsev, Y.V., and Chertovich, A.V., J. Chem. Phys., 2013, vol. 139, p. 224901.

    Article  PubMed  Google Scholar 

  44. Chertovich, A. and Kos, P., J. Chem. Phys., 2014, vol. 141, p. 134903.

    CAS  Article  PubMed  Google Scholar 

  45. Barbieri, M., Chotalia, M., Fraser, J., Lavitas, L.M., Dostie, J., Pombo, A., and Nicodemi, M., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 16173–16178.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Barbieri, M., Fraser, J., Lavitas, L.M., Chotalia, M., Dostie, J., Pombo, A., and Nicodemi, M., Nucleus, 2013, vol. 4, pp. 267–273.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fraser, J., et al., Mol. Syst. Biol., 2015, vol. 11, p. 852.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Maksimenko, O., Bartkuhn, M., Stakhov, V., Herold, M., Zolotarev, N., Jox, T., Buxa, M.K., Kirsch, R., Bonchuk, A., Fedotova, A., Kyrchanova, O., Renkawitz, R., and Georgiev, P., Genome Res., 2015, vol. 25, pp. 89–99.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W., Mol. Cell, 2002, vol. 10, pp. 1453–1465.

    CAS  Article  PubMed  Google Scholar 

  50. Zhang, Y., et al., Nature, 2013, vol. 504, pp. 306–310.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Maksimenko, O. and Georgiev, P., Front. Genet., 2014, vol. 5, p. 28.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Philonenko, E.S., Klochkov, D.B., Borunova, V.V., Gavrilov, A.A., Razin, S.V., and Iarovaia, O.V., Nucleic Acids Res., 2009, vol. 37, pp. 7394–7406.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Ulianov, S.V., Gavrilov, A.A., and Razin, S.V., Epigenetics Chromatin, 2012, vol. 5, p. 16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Razin, S.V., Gavrilov, A.A., Ioudinkova, E.S., and Iarovaia, O.V., FEBS Lett., 2013, vol. 587, pp. 1840–1847.

    CAS  Article  PubMed  Google Scholar 

  55. Weinreb, C. and Raphael, B.J., Bioinformatics, 2015, pii: btv485.

    Google Scholar 

  56. Wang, X.T., Dong, P.F., Zhang, H.Y., and Peng, C., Nucleic Acids Res., 2015, vol. 43, pp. 7237–7246.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Dekker, J. and Heard, E., FEBS Lett., 2015, vol. 589, pp. 2877–2884.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., and Aiden, E.L., Cell, 2014, vol. 159, pp. 1665–1680.

    CAS  Article  PubMed  Google Scholar 

  59. Sanborn, A.L., et al., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. E6456–E6465.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Zuin, J., Dixon, J.R., van der Reijden, M.I., Ye, Z., Kolovos, P., Brouwer, R.W., van de Corput, M.P., van de Werken, H.J., Knoch, T.A., Grosveld, F.G., Ren, B., and Wendt, K.S., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 996–1001.

    CAS  Article  PubMed  Google Scholar 

  61. Goloborodko, A., Imakaev, M.V., Marko, J.F., and Mirny, L., Elife, 2016, vol. 5. eLife 2016. doi 10.7554/eLife.14864

    Google Scholar 

  62. Maeso, I. and Tena, J.J., Semin. Cell Dev. Biol., 2015. doi 10.1016/j.semcdb.2015.12.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Razin.

Additional information

The paper is based on the materials of the “Chemical Biology 2016” conference; Novosibirsk, Russia, July 24–29, 2016.

Original Russian Text © S.V. Razin, A.A. Gavrilov, P. Kos, S.V. Ulianov, 2017, published in Bioorganicheskaya Khimiya, 2017, Vol. 43, No. 2, pp. 115–123.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razin, S.V., Gavrilov, A.A., Kos, P. et al. Self-organization of a chromatin fibril into topologically-associated domains. Russ J Bioorg Chem 43, 99–106 (2017). https://doi.org/10.1134/S1068162017010083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162017010083

Keywords

  • chromatin
  • topologically-associated domain
  • computer simulation
  • active genes
  • insulators