Skip to main content
Log in

Transformation of wheat straw polysaccharides under dynamic conditions of subcritical autohydrolysis

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Transformation of wheat straw polysaccharides under dynamic conditions of subcritical autohydrolysis has been examined at a pressure of 30 MPa in a temperature range of 150—290°C. The dependence of the yield of gaseous, liquid, and solid products on the process temperature has been studied. The formation of liquid products occurs mainly due to the hydrolysis of pentosans and partially of cellulose in a range of 150–200°C. The main components of liquid products are oligo- and monosaccharides. Xylose and arabinose comprise more than 65% of monosaccharides. A temperature rise in a range of 200–290°C is accompanied by a decrease in medium pH, cellulose hydrolysis, and intensive gasification. Glucose predominates in monosaccharides of liquid products isolated at 270°C; a portion of pentoses does not exceed 25% of the total of monosaccharides. The maximal yield of sugars is observed at 200°C and then decreases from 29.6 to 5.3% per straw oven-dry weight at 270°C. A decrease in reactivity of straw cellulose treated at 200°C to enzymatic hydrolysis has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.S., Lee, Y.Y., and Torget, R.W., Biochem. Biotechnol., 2001, vols. 91–93, nos. 1–9, pp. 331–340.

    Google Scholar 

  2. Ortega, N., Busto, M.D., and Perez-Mateos, M., Int. Biodeterior. Biodegrad., 2001, vol. 47, no. 1, pp. 7–14.

    Article  CAS  Google Scholar 

  3. Wiboonsirikul, J., Kimura, Y., Kadota, M., Morita, H., Tsuno, T., and Adachi, S., Food Chem., 2007, vol. 55, no. 21, pp. 8759–8765.

    Article  CAS  Google Scholar 

  4. Alvira, P., Tomás-Pejó, E., Ballesteros, M., and Negro, M.J., Biores. Technol., 2010, vol. 101, no. 13, pp. 4851–4861.

    Article  CAS  Google Scholar 

  5. Talebnia, F., Karakashev, D., and Angelidaki, I., Biores. Technol., 2010, vol. 101, no. 13, pp. 4744–4753.

    Article  CAS  Google Scholar 

  6. Pourali, O., Asghari, F.S., and Yoshida, H., Food Chem., 2009, vol. 115, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  7. Luque de Castro, M.D., Jimenez-Carmona, M.M., and Fernandez-Perez, V., Trends Anal. Chem. (Pers. Ed.), 1999, vol. 18, no. 11, pp. 708–716.

    Article  CAS  Google Scholar 

  8. Bicker, M., Endres, S., Ott, L., and Vogel, H., J. Mol. Catal. A: Chem., 2005, vol. 239, pp. 151–157.

    Article  CAS  Google Scholar 

  9. Kruse, A. and Gawlik, A., Industr. Engin. Chem. Res., 2003, vol. 42, no. 2, pp. 267–279.

    Article  CAS  Google Scholar 

  10. Asghari, F.S. and Yoshida, H., Industr. Engin. Chem. Res., 2007, vol. 46, no. 23, pp. 7703–7710.

    Article  CAS  Google Scholar 

  11. Pourali, O., Asghari, F.S., and Yoshida, H., Chem. Engin. J., 2010, vol. 160, pp. 259–266.

    Article  CAS  Google Scholar 

  12. Ingram, T., Rogalinski, T., Antranikian, G., Bockemühl, V., and Brunner, G., J. Supercrit. Fluids, 2009, vol. 48, no. 3, pp. 238–246.

    Article  CAS  Google Scholar 

  13. Pérez, J.A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M.J., and Manzanares, P., Fuel, 2008, vol. 87, nos. 17–18, pp. 3640–3647.

    Article  Google Scholar 

  14. Evstaf’ev, S.N., Fomina, E.S., and Privalova, E.A., Khim. Rastit. Syr’ia, 2011, no. 4, pp. 15–18.

    Google Scholar 

  15. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Work on the Chemistry of Wood and Cellulose), Moscow, 1991.

    Google Scholar 

  16. Ivanova, N.V., Ovodova, R.G., and Babkin, V.A., Khim. Rastit. Syr’ia, 2006, no. 1, pp. 15–20.

    Google Scholar 

  17. Ovodov, Iu.S., Gazozhidkostnaya khromatografiya uglevodov. Obzor (Gas–Liquid Chromatography of Carbohydrates. Overview), Vladivostok, 1970.

    Google Scholar 

  18. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Anal. Chem., 1956, vol. 28, no. 3, pp. 350–356.

    Article  CAS  Google Scholar 

  19. Startsev, O.V., Salin, B.N., and Skurydin, Yu.G., Khim. Tekhnol., 2000, vol. 370, no. 5, pp. 638–641.

    CAS  Google Scholar 

  20. Hata, S., Wiboonsirikul, J., Maeda, A., Kimura, Y., and Adachi, S., Biochem. Eng. J., 2008, vol. 40, pp. 44–53.

    Article  CAS  Google Scholar 

  21. Kaleine, D.A., Veveris, A.G., Polmanis, A.G., Erin’sh, P.P., et al., Khim. Drevesiny, 1990, no. 3, pp. 101–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chechikova.

Additional information

Original Russian Text © S.N. Evstafev, E.V. Chechikova, 2015, published in Khimiya Rastitel’nogo Syr’ya, 2015, No. 1, pp. 41–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstafev, S.N., Chechikova, E.V. Transformation of wheat straw polysaccharides under dynamic conditions of subcritical autohydrolysis. Russ J Bioorg Chem 42, 700–706 (2016). https://doi.org/10.1134/S1068162016070050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162016070050

Keywords

Navigation