Skip to main content

Biospecific nanoparticles for multiplex phosphorescence analysis (PHOSPHAN)


We have developed a technology for the production of polymeric nanoparticles containing the incorporated phosphorescent label (europium ions–naphthoyltrifluoroacetone complexes) and streptavidin that is covalently bound on the surface. The aggregation-stable biospecific nanoparticles (40–60 nm in diameter) include up to 2000 molecular tags/particle and retain biological activity and stable phosphorescence for at least 20 months. They can be used in phosphorescence analysis (PHOSPHANTM)-based biochip technology as an effective detector system to record phosphorescence from microzones (microarrays) printed on the well bottoms of standard polystyrene microplates. The creation of a dense monolayer on the surface of a microzone requires up to 108 particles/microarray, or 109 particles/mm2 of area; this is in good agreement with theoretical estimates. The detection limit is as low as 300–400 phosphorescent nanoparticles per a microzone with an area of ~0.1 mm2. It has been demonstrated in the model of thyroid stimulating hormone (TSH) detection in filter paper dried blood that the newly developed detector system is five times more sensitive than the conventional methods of multiplex PHOSPHAN (with Pt-coproporphyrin phosphorescent label) and lanthanide immune fluoroassay (with fluorescent Eu3+ chelate complexes registered in the enhancement solution). The sensitivity of phosphorescent nanoparticle-based detector system is as low as 6.8 × 105 molecules/1.5 μL sample, which corresponds to a TSH concentration of 1.5 × 10–14 M.

This is a preview of subscription content, access via your institution.



bovine serum albumin




metacrylic acid


2-naphthoyl trifluoroacetone


phosphorescence analysis




sodium dodecyl sulfate


trioctylphosphine oxide


time-resolved fluoroimmunoassay


thyroid-stimulating hormone


  1. Osin, N.S., Pomelova, V.G., Sokolov, A.S., Bychenkova, T.A., Bekman, N.I., Sharafudinova, T.Yu., Asliyan, S.K., Ivanovskaya, N.P., Laricheva, S.Yu., and Kanaeva, T.A, Vestnik RAMN, 2007, no. 12, pp. 3–10.

    Google Scholar 

  2. Osin, N.S. and Pomelova, V.G., Frontiers in Research. National Institute of Allergy and Infectious Diseases, NIH, Georgiev, V.St., Western, K.A., and McGowan, J.J., Eds., Totowa, NJ: Humana Press, 2008, pp. 233–240.

  3. Marin, S.J., Merrell, M., Marin, S.J., Merrell, M., and McMillin, G.A., J. Analyt. Toxicol., 2011, vol. 35, no. 1, pp. 40–45.

    CAS  Article  Google Scholar 

  4. Troyan, S.L., Kianzad, V., Gibbs-Strauss, S.L., Gioux, S., Matsui, A., Oketokoun, R., Ngo, L., Khamene, A., Azar, F., and Frangioni, J.V, Ann. Surg. Oncol., 2009, vol. 16, no. 10, pp. 2943–2952.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stafford, P., Halperin, R., Legutki, J.B., Magee, D.M., Galgiani, J., and Johnston, S.A, Mol. Cell Proteomics, 2012, vol. 11, no. 4, p. M111.011593.

    Google Scholar 

  6. Pavkovica, M., Riefkeb, B., Gutberletc, K., Raschkeb, M., and Ellinger-Ziegelbauer, H., J. Pharmacol. Toxicol. Methods, 2014, vol. 69, no. 2, pp. 196–204.

    Article  Google Scholar 

  7. Pomelova, V.G., Korenberg, E.I., Kuznetsova, T.I., Bychenkova, T.A., Bekman, N.I., and Osin, N.S., PLoS ONE, 2015, vol. 10, no. 7, pp. 1–14. doi 10.1371/journal.pone.0130048

    Article  Google Scholar 

  8. Bekman, N.I., Laricheva, S.Yu., Bychenkova, T.A., Pomelova, V.G., and Osin, N.S, Klin. Lab. Diagn., 2015, no. 5, pp. 23–26.

    Google Scholar 

  9. Catalogue of Bioscience (Tianjin) Biotechnology Co., Ltd.

  10. Catalogue of Medisensor, Inc.

  11. Catalogue of Lumigenex, Co. LTD.

  12. Härmä, H., Soukka, T., Lönnberg, S., Paukkunen, J., Tarkkinen, P., and Lövgren, T, Luminescence, 2000, vol. 15, no. 6, pp. 351–355.

    Article  PubMed  Google Scholar 

  13. Ruckenstein, E, Adv. Polymer Sci., 1997, vol. 127, pp. 1–58.

    CAS  Article  Google Scholar 

  14. Yao-Hua van Berkel, K., Entry and the Kinetics of Emulsion Polymerisation, University of Canterbury Christchurch, New Zealand, June 2004.

    Google Scholar 

  15. Reaktsii v polimernykh sistemakh (Reactions in Polymeric Systems), Ivanchev, S.S., Ed., Leningrad: Khimiya, 1987.

  16. Pavlyuchenko, V.N. and Ivanchev, S.S, Usp. Khim., 1981, vol. 50, no. 4, pp. 715–745.

    CAS  Article  Google Scholar 

  17. Lee, C.-F, Colloid Polym. Sci., 2002, vol. 280, pp. 116–123.

    CAS  Article  Google Scholar 

  18. Tang, J., Ding, T., Daniels, E.S., Dimonie, V.L., Klein, A., and El-Aasser, M.S., J. Appl. Polymer Sci., 2003, vol. 88, pp. 30–41.

    CAS  Article  Google Scholar 

  19. Men’shikova, A.Yu., Evseeva, T.G., Sirotkin, A.K., and Shabsel’s, B.M, Zh. Prikl. Khim., 2005, vol. 78, no. 6, pp. 1029–1033.

    Google Scholar 

  20. Graillat, C., Pichotb, C., and Guyov, A, Colloids Surf., 1991, vol. 56, pp. 189–200.

    CAS  Article  Google Scholar 

  21. Prokopov, N.I., Gritskova, I.A., Cherkasov, B.P., and Chalykh, A.E, Usp. Khim., 1996, vol. 65, no. 2, pp. 178–192.

    CAS  Article  Google Scholar 

  22. Men’shikova, A.Yu., Monodisperse polymeric particles in regulated surface structure, Doctoral (Chem.) Dissertation, St. Petersburg, 2008.

    Google Scholar 

  23. Abramzon, A.A., Bocharov, V.V., and Gaevoi, G.M., Poverkhnostno-aktivnye veshchestva: Spravochnik (Surfactants: A Handbook), Abramzon, A.A. and Gaevii, G.M., Eds., Leningrad: Khimiya, 1979.

  24. Osin, N.S., Pomelova, V.G., Shlyakova, S.Yu., Bulatov, A.A., Osipova, T.A., Sigal, E.R., Koryazova, L.K., and Martynov, A.V, Biotekhnologiya, 1997, nos. 9–10, pp. 49–55.

    Google Scholar 

  25. Sunkara, H.B., Jethmalani, J.M., and Ford, W.T., J. Polymer Sci. Part A: Polymer Chem., 1994, vol. 32, pp. 1431–1435.

    CAS  Article  Google Scholar 

  26. Buechler, K.F., Noar, J.B., and Tadesse, L., Fluorescence energy transfer in particles, US Patent no. 6238931 B1, 2001.

    Google Scholar 

  27. Huhtinen, P., Kivela, M., Kuronen, O., Hagren, V., Takalo, H., Tenhu, H., Lovgren, T., and Harma, H, Anal. Chem., 2005, vol. 77, pp. 2643–2648.

    CAS  Article  PubMed  Google Scholar 

  28. Lerner, D., Ricchiero, F., Richard, J., Teychenne, D., and Vaslin, S., Fluorescent latex containing at least two fluorochromes, process for producing it and application thereof, US Patnet no. 5716855, 1998.

    Google Scholar 

  29. Staros, J.V., Wright, R.W., and Swingle, D.M, Anal. Biochem., 1986, vol. 156, no. 1, pp. 220–222.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. V. Paramonov.

Additional information

Original Russian Text © D.V. Paramonov, T.S. Kostryukova, T.A. Bychenkova, V.G. Pomelova, N.S. Osin, 2016, published in Bioorganicheskaya Khimiya, 2016, Vol. 42, No. 6, pp. 722–731.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paramonov, D.V., Kostryukova, T.S., Bychenkova, T.A. et al. Biospecific nanoparticles for multiplex phosphorescence analysis (PHOSPHAN). Russ J Bioorg Chem 42, 655–663 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • nanoparticles
  • phosphorescence analysis (PHOSPHAN)
  • microarrays
  • time-resolved luminescence
  • europium complexes
  • Pt coproporphyrin
  • thyroid-stimulating hormone (TSH)