Skip to main content

Antimicrobial activities of some novel thiazoles

Abstract

2-(4-Phenylthiazol-2(3H)-ylidene)-malononitrile was synthesized by treating 1-phenyl-2-thiocyanatoethanone with malononitrile. Reaction of 2-(4-phenylthiazol-2(3H)-ylidene)-malononitrile with hydrazine hydrate afforded 4-(4-phenylthiazol-2-yl)-1H-pyrazole-3,5-diamine, reaction with benzylidenemalononitrile yielded 2-(5-benzylidene-4-phenyl-5H-thiazol-2-ylidene)-malononitrile, and coupling with benzenediazonium chloride gave 2-(4-phenyl-5-phenylazo-3H-thiazol-2-ylidene)-malononitrile. Diaminopyrazole reacted with enaminonitrile to yield the 3-(4-phenylthiazol-2-yl)pyrazolo[1,5-a]pyrimidine-2,7-diamine. All synthesized compounds showed significant antimicrobial activities with MIC range of 5–750 µg/mL. The results demonstrated a correlation of the hydrophobicity of the compounds with their antimicrobial activity. The most potent antimicrobial compound was 2-(4-phenylthiazol-2(3H)-ylidene)-malononitrile.

This is a preview of subscription content, access via your institution.

References

  1. Elnagdi, M.H. and Abd Allah, S.O., J. Prakt. Chem., 1973, vol. 315, pp. 1009–1016.

    CAS  Article  Google Scholar 

  2. Tsai, P.C. and Wang, I.J., Dyes Pigments, 2007, vol. 74, pp. 578–584.

    CAS  Article  Google Scholar 

  3. Pi, C.T. and Wang, I.J., Dyes Pigments, 2004, vol. 64, pp. 259–264.

    Google Scholar 

  4. El-Gaby, M.S.A., Taha, N.M., Micky, J.A., and ElSharief, M.A.M.Sh., Acta Chimica Slovenica, 2002, vol. 49, pp. 159–171.

    CAS  Google Scholar 

  5. Cottarel, G., PCT Int. Appl., no. WO 2009042270, 2009.

    Google Scholar 

  6. Shaikh, B.M., Konda, S.G., Chobe, S.S., Mandawad, G.G., Yemul, O.S. and Dawane, B.S., J. Chem. Pharm. Res., 2011, vol. 3, pp. 435–443.

    CAS  Google Scholar 

  7. Sugumaran, M., Sethuvani, S., and Poornima, M., Res. J. Pharm. Biol. Chem. Sci., 2012, vol. 3, pp. 625–631.

    CAS  Google Scholar 

  8. Schwartz, J.R., Saunders, C.W., Youngquist, R.S., Kelly, C.P., Domsic, J.K., Lucas, R.L., and Xu, J., PCT Int. Appl., no. WO 2012058557 A2 20120503, 2012.

    Google Scholar 

  9. Gaikwad, N.D., Patil, S.V., and Bobade, V.D., Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 3449–3454.

    CAS  Article  PubMed  Google Scholar 

  10. Vinay, V. and Lakshika, K.A., Int. J. Res. Pharm. Sci., 2011, vol. 1, pp. 17–27.

    CAS  Google Scholar 

  11. Devprakash, B. and Udaykumar, A.A., J. Pharm. Res., 2011, vol. 4, pp. 2436–2440.

    CAS  Google Scholar 

  12. Pandey, Y., Sharma, P.K., Kumar, N., and Singh, A., Int. J. Pharm. Tech. Res., 2011, vol. 3, pp. 980–985.

    CAS  Google Scholar 

  13. Cunico, W., Gomes, C.R.B., and Vellasco, W.T., MiniRev. Org. Chem., 2008, vol. 5, pp. 336–344.

    CAS  Article  Google Scholar 

  14. Eldin, S.M., Zeitschrift fuer Naturforschung, B: Chem. Sci., 1999, vol. 54, pp. 1589–1597.

    CAS  Google Scholar 

  15. Dyachenko, V.D., Chernega, A.N., and Dyachenko, S.V., Russ. J. Gen. Chem., 2012, vol. 82, pp. 720–724.

    CAS  Article  Google Scholar 

  16. Dyachenko, V.D., Russ. J. Org. Chem., 2006, vol. 42, pp. 1085–1086.

    CAS  Article  Google Scholar 

  17. Al-Mousawi, S.M., Moustafa, M.S., and Elnagdi, M.H., Molecules, 2011, vol. 16, pp. 3456–3468.

    CAS  Article  PubMed  Google Scholar 

  18. Al-Mousawi, S.M., Moustafa, M.S., and Elnagdi, M.H., ARKIVOC, 2010, vol. 2, pp. 224–232.

    Google Scholar 

  19. Ishiwata, Y., Eur. Pat. Appl., no. EP1975204A220081001, 2008.

    Google Scholar 

  20. Abdelrazek, F.M., Salah, Abdellatif M., and Elbazza, Z.E., Archiv der Pharmazie, 1992, vol. 325, pp. 301–305.

    CAS  Article  PubMed  Google Scholar 

  21. Cambridge Crystallographic Data Centre, deposit no. CCDC 795153. www.ccdc.cam.ac.uk.

  22. van Saene, R., Fairclough, S., and Petros, A., Clin. Microbiol. Inf., 1998, vol. 4, pp. 56–57.

    Article  Google Scholar 

  23. Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K., Nature, 2011, vol. 469, pp. 483–490.

    CAS  Article  PubMed  Google Scholar 

  24. Moellering, R.C., Int. J. Antimicrob. Agents, 2001, vol. 37, pp. 2–9.

    Article  Google Scholar 

  25. James H.J. and Jean, C.L., Antimicrob. Agents Chemother., 1975, vol. 8, pp. 610–611.

    Article  Google Scholar 

  26. Kuske, C.R., Barns, S.M., and Busch, J.D., Appl. Environ. Microbiol., 1997, vol. 63, pp. 3614–3621.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zunaina, E., Wan, H.W.H., Chan, Y.Y., Nur, H.A.R., Balqis, K.S.K.A., Sabariah, O., Zainul, F.Z., and Manickam, R., Ophthalmology, 2008, vol. 8, pp. 7–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh M. Al-Mousawi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Mousawi, S.M., Moustafa, M.S. & Al-Saleh, E. Antimicrobial activities of some novel thiazoles. Russ J Bioorg Chem 42, 428–433 (2016). https://doi.org/10.1134/S1068162016040038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162016040038

Keywords

  • thiazoles
  • aminopyrazoles
  • antimicrobial activities