Skip to main content
Log in

Purification and characterization of a thermally stable yellow laccase from Daedalea flavida MTCC-145 with higher catalytic performance towards selective synthesis of substituted benzaldehydes

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A laccase from the culture filtrate of white rot fungus Daedalea flavida MTCC-145 has been purified and characterized. The method involved concentration of the culture filtrate by ultrafiltration and an anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (native PAGE) both gave single protein bands indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 75.0 kDa. Purification fold was 21.5 while recovery of the enzyme activity was 11.52%. Using 2,6-dimethoxyphenol, diammonium salt of 2,2'-[azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)] and 3,5-dimethoxy-4-hydroxybenzaldehyde azine as substrates, the Km, kcat, and k cat/K m values of the laccase were found to be 440 µM, 6.45 s–1, 1.47 × 104 M–1 s–1; 366 µM, 6.45 s–1, 1.76 × 104 M–1 s–1; and 226 µM, 6.45 s–1, 2.85 × 104 M–1 s–1, respectively. The pH and temperature optima were 4.5 and 50°C, respectively. The enzyme was most stable at pH 5.0 when exposed for 1 h. The purified laccase has yellow color and shows no absorption band around 610 nm characteristic of blue laccases. The enzyme transforms toluene and substituted toluenes to corresponding benzaldehyde and substituted benzaldehydes in the absence of mediator molecules with higher catalytic efficiency as compared to other known laccases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Multi-Copper Oxidases, Messerschmidt, A., Ed., Singapore: World Scientific Publishing, 1997.

  2. Yadav, M. and Yadav, K.D.S., Structural and functional aspects of lignolytic enzymes, in Lignocellulose Biotechnology: Future Prospects, Kuhad, R.C., and Singh, I.K., Eds., New Delhi: International Publishing House, Pvt. Ltd., 2007, pp. 63–88.

    Google Scholar 

  3. Riva, S., Trends Biotechnol., 2006, vol. 24, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  4. Baldrian, P., FEMS Microbiol. Rev., 2006, vol. 30, pp. 215–242.

    Article  CAS  PubMed  Google Scholar 

  5. Dwivedi, U.N., Singh, P., Pandey, V.P., and Kumar, A., J. Mol. Cat. B: Enzymatic, 2011, vol. 68, pp. 117–128.

    Article  CAS  Google Scholar 

  6. Quintanar, L., Yoon, J., Aznar, C.P., Palmer, A.E., Andersson, K.K., Britt, R.D., and Solomon, E.I., J. Am. Chem. Soc., 2005, vol. 127, pp. 13832–13845.

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida, H., J. Chem. Soc., 1883, vol. 43, pp. 472–486.

    Article  CAS  Google Scholar 

  8. Bao, W., Mally, D.M.O., Whetten, R., and Sederoff, R.R., Science, 1973, vol. 260, pp. 672–674.

    Article  Google Scholar 

  9. Huang, H.W., Zoppellero, G., and Sakurai, T., J. Biol. Chem., 1999, vol. 274, pp. 3271–3272.

    Google Scholar 

  10. Chaurasia, P.K., Yadav, A., Yadav, R.S.S., and Yadava, S., Res. Rev. Biosci., 2013, vol. 7, pp. 66–71.

    CAS  Google Scholar 

  11. Chaurasia, P.K., Bharati, S.L., and Singh, S.K., Res. Plant Sci., 2013, vol. 1, pp. 32–37. doi: 10.12691/plant1-2-5

    Google Scholar 

  12. Messerschmidt, A. and Huber, R., Eur. J. Biochem., 1990, vol. 187, pp. 341–352.

    Article  CAS  PubMed  Google Scholar 

  13. Mayer, A.M. and Staples, R.C., Phytochemistry, 2002, vol. 60, pp. 551–565.

    Article  CAS  PubMed  Google Scholar 

  14. Enguita, F.J., J. Biol. Chem., 2004, vol. 279, pp. 23472–23476.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas, B.R., Yonekura, M., Morgan, T.D., Czapla, T.H., Hopins, T.L., and Kramer, K.J., Biochemistry, 1989, vol. 19, pp. 611–622.

    CAS  Google Scholar 

  16. Parkinson, N., Smith, I., Weaver, R., and Edwards, J.P., Insect Biochem. Mol. Biol., 2001, vol. 31, pp. 57–63.

    Article  CAS  PubMed  Google Scholar 

  17. Morozova, O.V., Shumakovich, G.P., Gorbacheva, M.A., Shleev, S.V., and Yaropolov, A.I., Biochemistry, 2007, vol. 72, no. 10, pp. 1136–1150.

    CAS  PubMed  Google Scholar 

  18. Edens, W.A., Goins, T.Q., Dooley, D., and Henson, J.M., Appl. Environ. Microbiol., 1999, vol. 65, no. 7, pp. 3071–3074.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Iyer, G. and Chattoo, B.B., FEMS Microbiol. Lett., 2003, vol. 227, no. 1, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  20. Binz, T. and Canevascini, G., Curr. Microbiol., 1997, vol. 35, no. 5, pp. 278–281.

    Article  CAS  Google Scholar 

  21. Palonen, H., Saloheimo, M., Viikari, L., and Kruus, K., Enz. Microb. Technol., 2003, vol. 33, no. 6, 854–862.

    Article  CAS  Google Scholar 

  22. Kiiskinen, L.L., Viikari, L., and Kruus, K., Appl. Microbiol. Biotechnol., 2002, vol. 59, nos. 2–3, pp. 198–204.

    CAS  PubMed  Google Scholar 

  23. Thakker, G.D., Evans, C.S., and Rao, K.K., Appl. Microbiol. Biotechnol., 1992, vol. 37, no. 3, pp. 321–323.

    Article  CAS  Google Scholar 

  24. Froehnerand, S.C. and Eriksson, K.E., J. Bacteriol., 1979, vol. 120, no. 1, pp. 458–465.

    Google Scholar 

  25. Molitoris, H.P. and Esser, K., Archiv. für Mikrobiologie, 1970, vol. 72, no. 3, pp. 267–296.

    Article  CAS  PubMed  Google Scholar 

  26. Banerjee, U.C. and Vohra, R.M., Folia Microbiologica, 1991, vol. 36, no. 4, pp. 343–346.

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez, A., Falcon, M.A., Carnicero, A., Perestelo, F., De La Fuente, G., and Trojanowski, J., Appl. Microbiol. Biotechnol., 1996, vol. 45, no. 3, pp. 399–403.

    Article  CAS  Google Scholar 

  28. Scherer, M. and Fischer, R., Archiv. Microbiol., 1998, vol. 170, no. 2, pp. 78–84.

    Article  CAS  Google Scholar 

  29. Abdel-Raheem, A. and Shearer, C.A., Fungal Diversity, 2002, vol. 11, pp. 1–19.

    Google Scholar 

  30. Wandrey, C., Liese, A., and Kihumbu, D., Org. Proc. Res. Dev., 2000, vol. 4, pp. 285–290.

    Article  Google Scholar 

  31. Couto, S.R. and Harrera, J.L.T., Biotechnol. Adv., 2006, vol. 24, pp. 500–513.

    Article  Google Scholar 

  32. Xu, F., Ind. Biotechnol., 2005, vol. 1, no. 1, pp. 38–50.

    Article  CAS  Google Scholar 

  33. Acunzo, D.F. and Galli, C., J. Eur. Biochem., 2003, vol. 270, pp. 3634–3640.

    Article  Google Scholar 

  34. Morozova, O.V., Shumakovich, G.P., Shleev, S.V., and Yaropolov, Y.I., Appl. Biochem. Microbiol., 2007, vol. 43, pp. 523–535.

    Article  CAS  Google Scholar 

  35. Coniglio, A., Galli, C., and Gentili, P., J. Mol. Cat. B: Enzymatic, 2008, vol. 50, pp. 40–49.

    Article  CAS  Google Scholar 

  36. Mikolasch, A., Niedermeyer, T.H.J., Lalk, M., Witt, S., Seefeld, S., Hammer, E., Schauer, F., Gesell, M., Hessel, S., Julich, W.D., and Lindoquist, U., Chem. Pharm. Bull., 2006, vol. 54, pp. 632–638.

    Article  CAS  PubMed  Google Scholar 

  37. Mikolasch, A., Niedermeyer, T.H.J., Lalk, M., Witt, S., Seefeldt, S., Hammer, E., Schauer, F., Salazar, M.G., Hessel, S., Julich, W.D., and Lindequist, U., Chem. Pharm. Bull., 2007, vol. 55, pp. 412–416.

    Article  CAS  PubMed  Google Scholar 

  38. Mikolasch, A., Hammer, E., Jonas, U., Popowski, K., Stielow, A., and Schaner, F., Tetrahedron, 2002, vol. 58, pp. 7589–7593.

    Article  CAS  Google Scholar 

  39. Chaurasia, P.K., Bharati, S.L., Singh, S.K., and Yadava, S., Russ. J. Gen. Chem., 2015, vol. 85, no. 3, pp. 683–685. doi: 10.1134/S1070363215030263

    Article  CAS  Google Scholar 

  40. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S., Int. J. Res. Chem. Environ., 2013, vol. 3, no. 1, pp. 188–197.

    CAS  Google Scholar 

  41. Chaurasia, P.K., Yadava, S., Bharati, S.L., and Singh, S.K., Synth. Comm., 2014, vol. 44, pp. 2535–2544. doi: 10.1080/00397911.2014.904879

    Article  CAS  Google Scholar 

  42. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S., Biochem. Ind. J., 2012, vol. 6, no. 7, pp. 237–242.

    CAS  Google Scholar 

  43. Chaurasia, P.K., Yadava, S., Bharati, S.L., and Singh, S.K., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 4, pp. 455–460. doi: 10.1134/S1068162014040025

    Article  CAS  Google Scholar 

  44. Chaurasia, P.K., Yadav, A., Yadav, R.S.S., and Yadava, S., J. Chem. Sci., 2013, vol. 125, no. 6, pp. 1395–1403.

    Article  CAS  Google Scholar 

  45. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S., Proc. Biochem., 2014, vol. 49, pp. 1647–1655. http://dx.doi.org/10.1016/j.procbio.2014.06.016

    Article  CAS  Google Scholar 

  46. Chaurasia, P.K., Yadava, S., Bharati, S.L., and Singh, S.K., Green Chem. Lett. Rev., 2014, vol. 7, no. 1, pp. 100–104. http://dx.doi.org/10.1080/17518253.2014.895869

    Article  Google Scholar 

  47. Leontievsky, A.A., Vares, T., Lankinen, P., Shergill, J.K., Pozdnyakova, N., Myasoedova, N.M., et al., FEMS Microbiol. Lett., 1997, vol. 156, pp. 9–14.

    Article  CAS  PubMed  Google Scholar 

  48. Leontievsky, A., Myasoedova, N., Pozdnyakova, N., and Golovleva, L., FEBS Lett., 1997, vol. 413, pp. 446–448.

    Article  CAS  PubMed  Google Scholar 

  49. Sahay, R., Yadav, R.S.S., and Yadava, S., Appl. Biochem. Biotechnol., 2012, vol. 166, pp. 563–575.

    Article  CAS  PubMed  Google Scholar 

  50. Couto, S.R. and Harrera, J.L.T., Biotechnol. Advan., 2006, vol. 24, pp. 500–513.

    Article  Google Scholar 

  51. Osma, J., Toca-Herrera, J.L., and RodriguezCouto, S., Enz. Res., 2010, article ID918761, pp. 1–8. doi: 10.4061/2010/918761

    Google Scholar 

  52. Brijwani, K., Rigdon, A., and Vadlani, P.V., Enz. Res., 2010, article ID149748, pp. 1–10. doi: 10.4061/2010/149748

    Google Scholar 

  53. Desai, S.S. and Nityanand, C., Asian J. Biotechnol., 2011, vol. 3, no. 2, pp. 98–124.

    Article  CAS  Google Scholar 

  54. Coll, M.P., Fernandez-Abalos, J.M., Villanueva, J.R., Santamaria, R., and Perez, P., Appl. Environ. Microbiol., 1993, vol. 59, no. 8, pp. 2607–2613.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Bourbonnais, R. and Paice, M.G., Appl. Microbiol. Biotechnol., 1992, vol. 36, pp. 823–827.

    CAS  Google Scholar 

  56. Chefetz, B., Chen, Y., and Hador, Y., Appl. Environ.Microbiol., 1998, vol. 64, pp. 3175–3179.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Potthast, A., Rosenanu, T., Chen, C.-L., and Gratzl, J.S., J. Org. Chem., 1995, vol. 60, pp. 4320–4321.

    Article  CAS  Google Scholar 

  58. Fritz-Langhals, E. and Kunath, B., Tetrahedron Lett., 1998, vol. 39, pp. 5955–5956.

    Article  CAS  Google Scholar 

  59. Catalogue of Strains (5th ed.), Chandigarh (India): Microbial Type Culture Collection and Gene Bank Institute of Microbial Technology, 2000.

  60. Lowry, O.H., Rosebrough, N.J., Farrand, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  61. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  62. Polyacrylamide Gel Electrophoresis: Laboratory Techniques, Uppsala (Sweden): Pharmacia, Laboratory Separation Division, 1984.

  63. Weber, K. and Osborn, M., J. Biol. Chem., 1969, vol. 244, pp. 4406–4412.

    CAS  PubMed  Google Scholar 

  64. Schagger, H. and von Jajow, G., Anal. Biochem., 1991, vol. 199, no. 2, pp. 223–231.

    Article  CAS  PubMed  Google Scholar 

  65. Zouri-Mechichi, H., Mechichi, T., Dhouib Sayadi, S., Marrtinez, A.T., and Martinez, M.J., Enz. Microb. Technol., 2006, vol. 39, pp. 141–148.

    Article  Google Scholar 

  66. Chaurasia, P.K., Singh, S.K., and Bharati, S.L., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 3, pp. 288–292. doi: 10.1134/S1068162014020034

    Article  CAS  Google Scholar 

  67. Chaurasia, P.K., Bharati, S.L., Singh, S.K., and Yadava, S., Russ. J. Gen. Chem., 2015, vol. 85, no. 1, pp. 173–175. doi: 10.1134/S1070363215010302

    Article  CAS  Google Scholar 

  68. Chaurasia, P.K., Bharati, S.L., Yadava, S., and Yadav, R.S.S., Indian J. Biochem. Biophys., 2015, vol. 52, no. 1, pp. 60–67.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chaurasia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Chaurasia, P.K., Yadav, A. et al. Purification and characterization of a thermally stable yellow laccase from Daedalea flavida MTCC-145 with higher catalytic performance towards selective synthesis of substituted benzaldehydes. Russ J Bioorg Chem 42, 59–68 (2016). https://doi.org/10.1134/S1068162016010143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162016010143

Keywords

Navigation