Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 41, Issue 7, pp 757–761 | Cite as

Microwave-assisted extraction of hypericin and pseudohypericin from Hypericum perforatum

  • V. V. Punegov
  • V. I. Kostromin
  • M. G. Fomina
  • V. G. Zaynullin
  • E. A. Yushkova
  • D. V. Belyh
  • I. U. Chukicheva
  • G. G. Zaynullin
Article

Abstract

The influence of the main parameters on extraction of naphthodianthrone pigments (hypericin and pseudohypericin) from raw phytomass Hypericum perforatum using microwave activation was studied. The maximal pigment extraction was found to be achieved when using 55% ethanol or isopropanol as extractants at a water duty of 40 (power density of microwave irradiation was 0.0205 W/cm3 at a frequency 2450 MHz for 60 s). The microwave-assisted extraction of hypericin and pseudohypericin from H. perforatum was experimentally proved to be a particular example of the mass transfer intensification in a capillary porous body–liquid system. Microwave activation is found to implement extraction by ten times, reducing the time necessary to fully extract the pigments from H. perforatum compared to classical extraction.

Keywords

Hypericum perforatum hypericin pseudohypericin microwave assisted extraction water duty extractant composition spectrophotometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandal, V., Mohan, Y., and Hemalatha, S., Pharma cogn. Rev., 2007, vol. 1, no. 1, pp. 7–18.Google Scholar
  2. 2.
    Portnyagina, N.V., Echishvili, E.E., Punegov, V.V., and Mishurov, V.P., Rastit. Resursy, 2009, vol. 45, no. 2, pp. 48–57.Google Scholar
  3. 3.
    www.sigmaaldrich.com/catalog/product/fluka/00190180Google Scholar
  4. 4.
    www.sigmaaldrich.com/catalog/product/sigma/h9416Google Scholar
  5. 5.
    Belikov, V.V., Tochkova, T.V., Shatunova, L.V., Kolesnik, N.T., and Bayandina, I.I., Rastit. Resursy, 1990, vol. 26, no. 4, pp. 541–578.Google Scholar
  6. 6.
    Abu-Samra, A., Morris, J.S., and Koirtyohann, S.R., Anal. Chem., 1975, vol. 47, pp. 1475–1477.CrossRefPubMedGoogle Scholar
  7. 7.
    Ganzler, K., Bati, J., and Valko, K., J. Chromatogr., 1986, vol. 371, pp. 299–306.CrossRefPubMedGoogle Scholar
  8. 8.
    Agabalaev, A.A., Karankevich, E.G., Popova, O.P., and Kuvaeva, Z.I., Izv. NAN Belarusi, Ser. Khim. Nauk, 2011, no. 4, pp. 40–42.Google Scholar
  9. 9.
    Sychev R.L. and Punegov, V.V., Novye dostizheniya v khimii i khimicheskoi tekhnologii rastitel’nogo syr’ya (New Advances in Chemistry and Chemical Engineer ing of Plant Materials), Barnaul, 2007, pp. 92–96.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Punegov
    • 1
  • V. I. Kostromin
    • 1
  • M. G. Fomina
    • 1
  • V. G. Zaynullin
    • 1
  • E. A. Yushkova
    • 1
  • D. V. Belyh
    • 2
  • I. U. Chukicheva
    • 2
  • G. G. Zaynullin
    • 2
  1. 1.Institute of BiologyKomi Scientific Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia
  2. 2.Institute of ChemistryKomi Scientific Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations