Skip to main content

Structure and stability of anionic liposomes complexes with PEG-chitosan branched copolymer


Application of branched copolymers of polyethylene glycol and chitosan (PEG-chitosan) as stabilizing agents for anionic liposomes was shown to improve considerably liposomes storage stability. In the course of the work, an efficient and convenient approach to synthesis of PEG-chitosan copolymers through chemical modification of chitosan amino groups with monomethoxy-PEG-N-hydroxysuccinimidyl succinate (mPEG-suc-NHS) was developed. Chitosan with varying degree of PEGylation were obtained and used as stabilizing agents for anionic liposomes prepared of dipalmitoylphosphatidylcholine-cardiolipin, 80/20 by weight. The molecular mechanism of complex formation between the anionic liposomes and PEG-chitosan was studied by methods of FTIR spectroscopy and dynamic light scattering. Phosphate and carbonyl groups were found to be the main sites of the aminopolysaccharide binding. Stabilization of the complexes is mainly achieved through electrostatic interactions between anionic groups of cardiolipin and free amino groups of PEG-chitosan. The method of liposome stabilization is promising for the development of new drug delivery systems.

This is a preview of subscription content, access via your institution.





dynamic light scattering




Fourier transform infrared spectroscopy


monomethoxy-PEG-N-hydroxysuccinimidyl succinate


polyethylene glycol


trinitrobenzenesulfonic acid


  1. Chang, C.C., Liu, D.Z., and Lin, S.Y., Food Chem. Tox., 2008, vol. 46, pp. 3116–3121.

    Article  CAS  Google Scholar 

  2. Sarmento, B., Martins, S., Ferreira, D.C., and Souto, E.B., Int. J. Nanomed., 2007, vol. 2, pp. 595–607.

    Google Scholar 

  3. Zhuang, J., Ping, Q., Song, Y., Qi, J., and Cui, Z., Int. J. Nanomed., 2010, vol. 5, pp. 407–416.

    CAS  Google Scholar 

  4. Senior, J.H., Crit. Rev. Ther. Drug Carrier Syst., 1987, vol. 3.I.2, pp. 123–193.

    Google Scholar 

  5. Hioki, A., Wakasugi, A., Kawano, K., Hattori, Y., and Maitani, Y., Biol. Pharm. Bull., 2010, vol. 33.I.9, pp. 1466–1470.

    Article  Google Scholar 

  6. Li, Q., Dunn, E.T., Grandmaison, E.W., and Goosen, M.F., Application and Properties of Chitosan, Lancaster: Technomic Publishing, 1997.

    Google Scholar 

  7. Jeon, Y.-J., Park, P.-J., and Kim, S.-K., Carbohydrate, 2001, vol. 44, pp. 71–76.

    Article  CAS  Google Scholar 

  8. Uchida, Y., Izume, M., and Ohtakara, A., Bull. Fac. Agr., Saga University, 1989, vol. 66, pp. 105–116.

    Google Scholar 

  9. Skjak-Braek, G., Anthonsen, T., and Sandford, P.A., Chitin and Chitosan: Chemistry, Biochemistry, Physical Properties and Applications, London, New York: Elsevier Applied Science, 1989.

    Google Scholar 

  10. Merzendorfer, H. and Zimoch, L., J. Exp. Biol., 2003, vol. 206, pp. 4393–4412.

    PubMed  Article  CAS  Google Scholar 

  11. Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., and Steurbaut, W., Biomacromol., 2003, vol. 4, pp. 1457–1465.

    Article  CAS  Google Scholar 

  12. Tikhonov, V.E., Stepnova, E.A., Babak, V.G., Yamskov, I.A., Palma-Guerrero, J., Jansson, H.-B., Lopez-Llorca, L.V., Salinas, J., Gerasimenko, D.V., Avdienko, I.D., and Varlamov, V.P., Carbohydr. Polymers, 2006, vol. 64, pp. 66–72.

    Article  CAS  Google Scholar 

  13. Varlamov, V.P., Nemtsev, S.V., and Tikhonov, V.E., Khitin i khitozan: priroda, poluchenie i primenenie (Chitin and Chitosan: Nature, Isolation, and Application), Moscow: Ross. Khitin. Obshch., 2010.

    Google Scholar 

  14. Slivkin, A.I., Lapenko, V.L., Arzamastsev, A.P., and Bolgov, A.A., Vestnik VGU, 2005, vol. 2, pp. 73–87.

    Google Scholar 

  15. Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, Ch., Gunn, J.W., Lee, D., Ellenbogen, R.G., Olson, J.M., and Zhang, M., Adv. Funct. Mater., 2009, vol. 19, pp. 2244–2251.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. Zhang, X.G., Teng, D.Y., Wu, Z.M., Wang, X., Wang, Z., Yu, D.M., and Li, C.X., J. Materials Science: Materials in Medicine, 2008, vol. 19, pp. 3525–3533.

    CAS  Google Scholar 

  17. Sashiwa, H., Yamamori, N., Ichinose, Y., Sunamoto, J., and Aiba, S., Macromol. Bioscience, 2003, vol. 3, pp. 231–233.

    Article  CAS  Google Scholar 

  18. Sashiwa, H., Kawasaki, N., Nakayama, A., Muraki, E., Yamamoto, N., and Aiba, S., Biomacromol., 2002, vol. 3, pp. 1126–1128.

    Article  CAS  Google Scholar 

  19. Il’ina, A.V. and Varlamov, V.P., Appl. Biochem. Microbiol., 2005, vol. 41, pp. 5–11.

    Article  Google Scholar 

  20. Yalpani, M. and Hall, L.D., Macromolecules, 1984, vol. 17, pp. 272–281.

    Article  CAS  Google Scholar 

  21. Makuska, R., Gorochovceva, N., Kulbokaite, R., Dedinaite, A., and Claesson, P., J. Colloid Interface Sci., 2007, vol. 305, no. 1, pp. 62–71.

    PubMed  Article  Google Scholar 

  22. Moreno, M.M., Garidel, P., Sunwalsky, M., Howe, J., and Brandenburg, K., Biochim. Biophys. Acta, 2009, vol. 1788, pp. 1296–1303.

    PubMed  Article  CAS  Google Scholar 

  23. Brandenburg, K., Kusumoto, S., and Seydel, U., Biochim. Biophys. Acta, 1997, vol. 1329, pp. 183–201.

    PubMed  Article  CAS  Google Scholar 

  24. Bensikaddour, H., Snoussi, K., Lins, L., Van Bambeke, F., Tulkens, P.M., Brasseur, R., Goormaghtigh, E., and Mingeot-Leclercq, M.-P., Biochim. Biophys. Acta, 2008, vol. 1778, pp. 2535–2543.

    PubMed  Article  CAS  Google Scholar 

  25. Popova, A.V. and Hincha, D.K., Biophysical J., 2007, vol. 93, pp. 1204–1214.

    Article  CAS  Google Scholar 

  26. Cies-lik-Boczula, K. and Koll, A., Biophysical Chemistry, 2009, vol. 140, pp. 51–56.

    Article  CAS  Google Scholar 

  27. Gorochovceva, N., Naderi, A., Dedinaite, A., and Makuska, R., Eur. Pol. J., 2005, vol. 41, pp. 2653–2662.

    Article  CAS  Google Scholar 

  28. Gorochovceva, N. and Makuska, R., Eur. Pol. J., 2004, vol. 40, pp. 685–691.

    Article  CAS  Google Scholar 

  29. Karasev, V.S., Bochkova, O.P., Chugunov, A.M., Melik-Nubarov, N.S., Grozdova, I.D., Chernovskaya, T.V., Denisov, L.A., Rudenko, E.G., Morozova, E.L., Bogush, V.G., Sidoruk, K.V., Koltun, I.O., Skatova, G.E., Abakumova, O.Yu., Podobed, O.V., and Sokolov, N.N., RF Patent No. 2441914, Byull. Izobret., No. 4, 2010.

  30. Pimpha, N., Sunintaboon, P., Inphonlek, S., and Tabata, Y.J., Biomaterials Sci., 2010, vol. 21, pp. 205–223.

    Article  CAS  Google Scholar 

  31. Hincha, D.K., Zuther, E., Hellwege, E.M., and Heyger, A.G., Glycobiology, 2002, vol. 12, pp. 103–110.

    PubMed  Article  CAS  Google Scholar 

  32. Sybachin, A.V., Litmanovich, E.A., Menger, F.M., and Yaroslavov, A.A., Langmuir, 2007, vol. 23, pp. 10034–10039.

    PubMed  Article  CAS  Google Scholar 

  33. Kozlova, N.O., Bruskovskaya, I.B., Okuneva, I.B., Melik-Nubarov, N.S., Yaroslavov, A.A., Kabanov, V.A., and Menger, F.M., Biochim. Biophys. Acta, 2001, vol. 1514, pp. 139–151.

    PubMed  Article  CAS  Google Scholar 

  34. Kudryashova, E.V., Bronza, V.L., Vinogradov, A.A., Kamyshny, A., Magdassi, S., and Levashov, A.V., J. Colloid Interface Sci., 2011, vol. 15, no. 2, pp. 490–497.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. V. Kudryashova.

Additional information

Original Russian Text © I.M. Deygen, E.V. Kudryashova, 2014, published in Bioorganicheskaya Khimiya, 2014, Vol. 40, No. 5, pp. 595–607.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deygen, I.M., Kudryashova, E.V. Structure and stability of anionic liposomes complexes with PEG-chitosan branched copolymer. Russ J Bioorg Chem 40, 547–557 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • anionic liposomes
  • IR spectroscopy
  • dynamic light scattering
  • PEG-chitosan
  • branched copolymers
  • stabilization