Skip to main content

Serum albumin: Search for new sites of interaction with organophosphorus compounds by the example of soman

Abstract

Albumin is known to be able to interact with organophosphorus compounds (OPCs), but neither amino acid residues of albumin that are responsible for this interaction nor the nature of the forming bonds have been finally established. Catalytic and pseudocatalytic functions of albumin are under consideration. Possible sites of interaction of albumin with soman have been elucidated by the methods of molecular modeling. Structures of the soman-albumin complexes have been determined by molecular docking. Stability of the obtained complexes has been evaluated by the method of molecular dynamics. The chemical bond between soman and the tyrosine-411 residue has been found to form only after deprotonation of the latter. The tyrosine-150 residue of albumin binds soman more effectively than tyrosine-411, and the tyrosine-150-deprotonation does not determine the efficacy of the binding (sorption) of soman, but affects the stability of the formed bound. It was proposed that the albumin residues of tyrosine-150 and serine-193 could serve as sites of the catalytic interaction with soman. We hypothesized that the deprotonation of an amino acid residue in one albumin site influenced initiation of the ligand binding in the other albumin site (allosteric albumin regulation).

This is a preview of subscription content, access via your institution.

Abbreviations

CE:

carboxyl esterase

OPC:

organophosphorous compound

PMPA:

pinacolylmethylphosphonic acid

RMSD:

root-mean-square deviation

References

  1. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., and Ascenzi, P., IUBMB Life, 2005, vol. 57, pp. 787–796.

    PubMed  Article  CAS  Google Scholar 

  2. Casida, J.E. and Augustinsson, K.B., Biochim. Biophys. Acta, 1959, no. 36, pp. 411–426.

    Google Scholar 

  3. Liyasova, M.S., Schopfer, L.M., and Lockridge, O., Biochem. Pharmacol., 2010, vol. 79, pp. 784–791.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  4. Tildon, J.T. and Ogilvie, J.W., J. Biol. Chem., 1972, vol. 247, pp. 1265–1271.

    PubMed  CAS  Google Scholar 

  5. Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A.A., and Otagiri, M., J. Mol. Biol., 2005, vol. 353, pp. 38–52.

    PubMed  Article  CAS  Google Scholar 

  6. Tove, S.B., Biochim. Biophys. Acta, 1962, no. 57, pp. 230–235.

    Google Scholar 

  7. Means, G.E. and Bender, M.L., Biochemistry, 1975, vol. 14, pp. 4989–4994.

    PubMed  Article  CAS  Google Scholar 

  8. Rainsford, K.D., Ford, N.L., Brooks, P.M., and Watson, H.M., Eur. J. Clin. Invest., 1980, vol. 10, pp. 413–420.

    PubMed  Article  CAS  Google Scholar 

  9. Dubois-Presle, N., Lapicque, F., Maurice, M.H., Fournel-Gigleux, S., Magdalou, J., Abiteboul, M., Siest, G., and Netter, P., Mol. Pharmacol., 1995, vol. 47, pp. 647–653.

    PubMed  CAS  Google Scholar 

  10. Kwon, C.H., Maddison, K., LoCastro, L., and Borch, R.F., Cancer Res., 1987, vol. 47, pp. 1505–1508.

    PubMed  CAS  Google Scholar 

  11. Salvi, A., Carrupt, P.A., Mayer, J.M., and Testa, B., Drug Metab. Dispos., 1997, vol. 25, pp. 395–398.

    PubMed  CAS  Google Scholar 

  12. De Vriese, C., Hacquebard, M., Gregoire, F., Carpentier, Y., and Delporte, C., Endocrinology, 2007, vol. 148, pp. 2355–2362.

    PubMed  Article  Google Scholar 

  13. Mourik, J. and de Jong, L.P., Arch. Toxicol., 1978, vol. 41, pp. 43–48.

    PubMed  Article  CAS  Google Scholar 

  14. Maliwal, B.P. and Guthrie, F.E., Mol. Pharmacol., 1981, vol. 20, pp. 138–144.

    PubMed  CAS  Google Scholar 

  15. Black, R.M., Harrison, J.M., and Read, R.W., Arch. Toxicol., 1999, vol. 73, pp. 123–126.

    PubMed  Article  CAS  Google Scholar 

  16. Williams, N.H., Harrison, J.M., Read, R.W., and Black, R.M., Arch. Toxicol., 2007, vol. 81, pp. 627–639.

    PubMed  Article  CAS  Google Scholar 

  17. John, H., Breyer, F., Thumfart, J.O., Hochstetter, H., and Thiermann, H., Anal. Bioanal. Chem., 2010, vol. 398, pp. 2677–2691.

    PubMed  Article  CAS  Google Scholar 

  18. Lockridge, O., Xue, W., Gaydess, A., Grigoryan, H., Ding, S.J., Schopfer, L.M., Hinrichs, S.H., and Masson, P., J. Biol. Chem., 2008, vol. 283, pp. 22582–22590.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. Benschop, H.P. and Jong, L.P., in Chemical Warfare Agents: Toxicity at Low Levels, Somani, S.M. and Romano, J.A., Jr., Eds., Boca Raton, FL: CRC Press, 2001, pp. 25–82.

  20. Radilov, A., Rembovskiy, V., Rybalchenko, I., Savelieva, E., Podolskaya, E., Babakov, V., Ermolaeva, E., Dulov, S., Kuznetsov, S., Mindukshev, I., Shpak, A., Krasnov, I., Khlebnikova, N., Jenkins, R., and Goncharov, N., in Handbook of the Toxicology of Chemical Warfare Agents, Gupta, R.C., Ed., Oxford: Elsevier Inc., 2009, pp. 69–91.

  21. Belinskaya, D.A., Iuffer, A.Kh., and Shestakova, N.N., Russ. J. Bioorg. Chem., 2010, vol. 36, pp. 185–190.

    Article  CAS  Google Scholar 

  22. Belinskaya, D.A., Shmurak, V.I., Prokof’eva, D.S., and Goncharov, N.V., Toks. Vestnik, 2012, no. 6, pp. 13–19.

    Google Scholar 

  23. Kua, J., Zhang, Y., and McCammon, A., J. Am. Chem. Soc., 2002, vol. 124, pp. 8260–8267.

    PubMed  Article  CAS  Google Scholar 

  24. Zhan, C.G., Zheng, F., and Landry, D.W., J. Am. Chem. Soc., 2003, vol. 125, pp. 2462–2474.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. Li, B., Nachon, F., Froment, M.T., Verdier, L., Debouzy, J.C., Brasme, B., Gillon, E., Schopfer, L.M., Lockridge, O., and Masson, P., Chem. Res. Toxicol., 2008, vol. 21, pp. 421–431.

    PubMed  Article  CAS  Google Scholar 

  26. Benschop, H.P., Konings, C.A., van Genderen, J., and de Jong, L.P., Fundam. Appl. Toxicol., 1984, vol. 4, pp. 84–95.

    Article  CAS  Google Scholar 

  27. Sant’Anna, C.M.R. Viana, A.D., and do Nascimento, N.M., Bioorg. Chem., 2006, vol. 34, pp. 77–89.

    PubMed  Article  Google Scholar 

  28. Chen, X., Fang, L., Liu, J.J., and Zhan, C.G., J. Phys. Chem. B., 2011, vol. 115, pp. 1315–1322.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  29. Fletcher, R. and Reeves, C.M., Comput. J., 1964, vol. 7, pp. 148–154.

    Article  Google Scholar 

  30. Hyperchem, Inc., Hyperchem. Users Manual, Ontario: Hypercube Inc., 1994.

    Google Scholar 

  31. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acids Res., 2000, vol. 28, pp. 235–242.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., Comput. Phys. Commun., 1995, vol. 91, pp. 43–56.

    Article  CAS  Google Scholar 

  33. Gani, O.A.B.S.M., Adekoya, O.A., Giurato, L., Spyrakis, F., Cozzini, P., Guccione, S., Winberg, J.O., and Sylte, I., J. Biophys., 2008, vol. 94, pp. 1412–1427.

    Article  CAS  Google Scholar 

  34. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., J. Comput. Chem., 1998, vol. 19, pp. 1639–1662.

    Article  CAS  Google Scholar 

  35. Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F., and Hermans, J., in Intermolecular Forces, Pullman, B., Ed., Dordrecht: Reidel D. Publishing Company, 1981, pp. 331–342.

  36. Berendsen, H.J.C., Postma, J.P.M., di Nola, A., van Gunsteren, W.F., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.

    Article  CAS  Google Scholar 

  37. Bussi, G., Zykova-Timan, T., and Parrinello, M., J. Chem. Phys., 2009, vol. 130, pp. 74101–74110.

    Article  Google Scholar 

  38. Darden, T., York, D., and Pedersen, L., J. Chem. Phys., 1993, vol. 3, pp. 10089–10092.

    Article  Google Scholar 

  39. Hess, B., Bekker, H., Berendsen, H.J.C., and Fraaije, J.G.E.M., J. Comput. Chem., 1997, vol. 8, pp. 1463–1473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Belinskaya.

Additional information

Original Russian Text © D.A. Belinskaya, V.I. Shmurak, D.S. Prokofieva, N.V. Goncharov, 2014, published in Bioorganicheskaya Khimiya, 2014, Vol. 40, No. 5, pp. 541–549.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belinskaya, D.A., Shmurak, V.I., Prokofieva, D.S. et al. Serum albumin: Search for new sites of interaction with organophosphorus compounds by the example of soman. Russ J Bioorg Chem 40, 499–506 (2014). https://doi.org/10.1134/S1068162014050033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014050033

Keywords

  • albumin
  • soman
  • molecular docking
  • molecular dynamics