Skip to main content

De novo transcriptome analysis of mulberry (Morus L.) under drought stress using RNA-Seq technology

Abstract

A large-scale RNA sequencing (RNA-seq) of mulberry (Morus L.) was carried out between two samples in regular and drought stress condition. In this research, de novo assembly was performed, and totally 54736 contigs were obtained from the reads, including the scaffolded regions. 1051 genes were identified that were significantly differently expressed between the two samples. As determined by Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes pathway mapping, 10110 GO terms and 247 pathways were assigned and then analyzed. Thousands of SSR markers produced in this study will enable genetic linkage mapping construction and gene-based association studies. Seven unique genes showing different expression level in control and drought stress groups were subsequently analyzed and identified by realtime PCR. For lack of mulberry whole genome information, transcriptome and de novo analysis from the two samples will provide important and useful information for later research and help genetic breeding of mulberry.

This is a preview of subscription content, access via your institution.

References

  1. Rai, M.K., Asthana, P., Singh, S.K., Jaiswal, V.S., and Jaiswal, U., Biotechnol. Adv., 2009, vol. 27, pp. 671–679.

    PubMed  Article  Google Scholar 

  2. Pan, G. and Lou, C.F., J. Plant. Physiol., 2008, vol. 165, pp. 1204–1213.

    CAS  PubMed  Article  Google Scholar 

  3. Ravi, V., Khurana, J.P., Tyagi, A.K., and Khurana, P., Tree Genet. Genomes, 2006, vol. 3, no. 1, pp. 49–59.

    Article  Google Scholar 

  4. Lal, S., Ravi, V., Khurana, J.P., and Khurana, P., Tree Genet. Genomes, 2009, vol. 5, no. 2, pp. 359–374.

    Article  Google Scholar 

  5. Gulyani, V. and Khurana, P., Tree Genet. Genomes, 2011, vol. 7, no. 4, pp. 725–738.

    Article  Google Scholar 

  6. Marcel, M., Michael, E., William E. A., et al., Nature, 2005, vol. 437, pp. 376–380.

    Google Scholar 

  7. Pandey, V., Nutter, R.C., and Prediger, E., Applied Biosystems SOLiDTM system: ligation based sequencing, in Next Generation Genome Sequencing: Towards Personalized Medicine, Milton, J.M., Ed., Weinheim: Wiley-VCH Verlag GmbH, 2008, pp. 29–41.

    Chapter  Google Scholar 

  8. Bentley, D.R., Nature, vol. 456, pp. 53–59.

  9. Harris, T.D., Science, 2008, vol. 320, pp. 106–109.

    CAS  PubMed  Article  Google Scholar 

  10. Morozova, O. and Marra, M.A., Genomics, 2008, vol. 92, pp. 255–264.

    CAS  PubMed  Article  Google Scholar 

  11. Cantacessi, C., Infect. Genet. Evol., 2010, vol. 10, no. 8, pp. 1199–1207.

    PubMed Central  PubMed  Article  Google Scholar 

  12. Wu, T., Qin, Z.W., Zhou, X.Y., Feng, Z., and Du, Y.L., J. Plant. Physiol., 2010, vol. 167, pp. 905–913.

    CAS  PubMed  Article  Google Scholar 

  13. Xiong, Y., Li, Q., Kang, B., and Chourey, P.S., Plant. Mol. Biol. Report., 2011, vol. 29, no. 4, pp. 835–847.

    CAS  Article  Google Scholar 

  14. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B., Nat. Methods, 2008, vol. 5, pp. 621–628.

    CAS  PubMed  Article  Google Scholar 

  15. Simon, S.A., Annu. Rev. Plant. Biol., 2009, vol. 60, pp. 305–333.

    CAS  PubMed  Article  Google Scholar 

  16. Morozova, O., Hirst, M., and Marra, M.A., Annu. Rev. Genomics Hum. Genet., 2009, vol. 10, pp. 135–151.

    CAS  PubMed  Article  Google Scholar 

  17. Wold, B. and Myers, R.M., Nature Methods, 2008, vol. 5, pp. 19–21.

    CAS  PubMed  Article  Google Scholar 

  18. Wang, Z., Gerstein, M., and Snyder, M., Nat. Rev. Genet., 2009, vol. 10, pp. 57–63.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Yang, Y., Plant. Mol. Biol. Report., 2011, vol. 29, no. 4, pp. 986–996.

    CAS  Article  Google Scholar 

  20. Nagalakshmi, U., Science, 2008, vol. 320, pp. 1344–1349.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Wilhelm, B.T., Nature, 2008, vol. 453, pp. 1239–1243.

    CAS  PubMed  Article  Google Scholar 

  22. Lister, R., Cell, 2008, vol. 133, no. 3, pp. 523–536.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Cloonan, N., Nat. Methods, 2008, vol. 5, pp. 613–619.

    CAS  PubMed  Article  Google Scholar 

  24. Marioni, J., Mason, C., Mane, S., Stephens, M., and Gilad, Y., Genome Res., 2008, vol. 18, pp. 1509–1517.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Sultan, M., Science, 2008, vol. 321, pp. 956–960.

    CAS  PubMed  Article  Google Scholar 

  26. Morin, R., BioTechniques, 2008, vol. 45, pp. 81–94.

    CAS  PubMed  Article  Google Scholar 

  27. Vera, J.C., Mol. Ecol., 2008, vol. 17, pp. 1636–1647.

    CAS  PubMed  Article  Google Scholar 

  28. Kristiansson, E., Asker, N., Forlin, L., and Larsson, D.G.J., BMC Genomics, 2009, vol. 10, p. 345.

    PubMed Central  PubMed  Article  Google Scholar 

  29. Meyer, E., BMC Genomics, 2009, vol. 10, p. 219.

    PubMed Central  PubMed  Article  Google Scholar 

  30. Wang, X.W., BMC Genomics, 2010, vol. 11, p. 400.

    PubMed Central  PubMed  Article  Google Scholar 

  31. Berardini, T.Z., Plant. Physiol., 2004, vol. 135, pp. 745–755.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Kanehisa, M. and Goto, S., Nucl. Acids Res., 2000, vol. 28, pp. 27–30.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Maher, C.A., Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 12353–12358.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Shi, C.Y., BMC Genomics, 2011, vol. 12, p. 131.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. Wang, Z.Y., BMC Genomics, 2010, vol. 11, p. 726.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Hale, M.C., McCormick, C.R., Jackson, J.R., and Dewoody, J.A., BMC Genomics, 2009, vol. 10, p. 203.

    PubMed Central  PubMed  Article  Google Scholar 

  37. Su, C.L., Plant. Cell. Physiol., 2011, vol. 52, no. 9, pp. 1501–1514.

    CAS  PubMed  Article  Google Scholar 

  38. Rohini, G., Ravi, K.P., Akhilesh, K., Tyagi, A.K., and Mukesh, J., DNA Res., 2011, vol. 18, no. 1, pp. 53–63.

    Article  Google Scholar 

  39. Brautigam, A., Mullick, T., Schliesky, S., and Weber, A.P., J. Exp. Bot., 2011, vol. 62, no. 9, pp. 3093–3102.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhao.

Additional information

The article is published in the original.

The first two authors contributed equally.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tong, W., Feng, L. et al. De novo transcriptome analysis of mulberry (Morus L.) under drought stress using RNA-Seq technology. Russ J Bioorg Chem 40, 423–432 (2014). https://doi.org/10.1134/S1068162014040037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014040037

Keywords

  • mulberry
  • drought stress
  • RNA-seq
  • de novo assembly
  • transcriptome
  • gene expression