Skip to main content

Intron 2 of human beta-globin in 3′-untranslated region enhances expression of chimeric genes

Abstract

The possibility of enhancing heterologous gene expression in mammalian cells by the introduction of an intron in 3′ untranslated region (UTR) was investigated. To this end, a fragment of human betaglobin gene with intron 2 and flanked exon regions was introduced into the vector-encoding green fluorescent protein TagGFP2 after the TagGFP2 stop-codon (Int+). The distance between the stop-codon and the exon junction was 35 nucleotides. It ensured that Int+ mRNA was resistant to degradation by nonsense mediated decay (NMD) machinery. A control vector Intcontained corresponding intronless sequence of the beta-globin mRNA. On the same plasmid, the second gene encoded far-red fluorescent protein Katushka was used to normalize fluorescence for transfection efficiency and expression level in individual cells. Transiently transfected HEK293T cells were analysed by flow cytometry. It was shown that cells transfected with plasmid carrying the Int+ gene possess 1.8 ± 0.2 fold higher green fluorescence compared to Intcells. The observed effect was used to enhance expression of destabilized variants of yellow fluorescent protein TurboYFP-dest with high degradation rate in mammalian cells. We believe that introduction of beta-globin intron in the 3′-UTR of the chimeric gene can be used to enhance its expression and may be advantageous in some cases when usage of 5′ UTR intron is inappropriate.

This is a preview of subscription content, access via your institution.

References

  1. Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M., and Stamm, S., Gene, 2013, vol. 514, pp. 1–30.

    CAS  PubMed  Article  Google Scholar 

  2. Le Hir, H., Nott, A., and Moore, M.J., Trends Biochem. Sci., 2003, vol. 28, pp. 215–220.

    PubMed  Article  Google Scholar 

  3. Li, H.W., Gao, Y.X., Raizada, M.K., and Sumners, C., Biochem. Biophys. Res. Commun., 2005, vol. 336, pp. 29–35.

    CAS  PubMed  Article  Google Scholar 

  4. Choi, T., Huang, M., Gorman, C., and Jaenisch, R., Mol. Cell Biol., 1991, vol. 11, pp. 3070–3074.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Morello, L., Giani, S., Troina, F., and Breviario, D., J. Exp. Bot., 2011, vol. 62, pp. 533–544.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Quilici, L.S., Silva-Pereira, I., Andrade, A.C., Albuquerque, F.C., Brigido, M.M., and Maranhao, A.Q., Biotechnol. Lett., 2013, vol. 35, pp. 21–27.

    CAS  PubMed  Article  Google Scholar 

  7. Schambach, A., Wodrich, H., Hildinger, M., Bohne, J., Krausslich, H.G., and Baum, C., Mol. Ther., 2000, vol. 2, pp. 435–445.

    CAS  PubMed  Article  Google Scholar 

  8. Lacy-Hulbert, A., Thomas, R., Li, X.P., Lilley, C.E., Coffin, R.S., and Roes, J., Gene Ther., 2001, vol. 8, pp. 649–653.

    CAS  PubMed  Article  Google Scholar 

  9. Rose, A.B., RNA, 2002, vol. 8, pp. 1444–1453.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Buchman, A.R. and Berg, P., Mol. Cell. Biol., 1988, vol. 8, pp. 4395–4405.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Moabbi, A.M., Agarwal, N., Kaderi, El.B., and Ansari, A., Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 8505–8510.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Jackson, Ch.E., O’Neil, D., and Bank, A., J. Biol. Chem., 1995, vol. 270, pp. 28448–28456.

    CAS  PubMed  Article  Google Scholar 

  13. Bharadwaj, R.R., Trainor, C.D., Pasceri, P.P., and Ellis, J., Blood, 2003, vol. 101, pp. 1603–1610.

    CAS  PubMed  Article  Google Scholar 

  14. Evans, M.J. and Scarpulla, R.C., Gene, 1989, vol. 84, pp. 135–142.

    CAS  PubMed  Article  Google Scholar 

  15. Palmiter, R.D., Sandgren, E.P., Avarbock, M.R., Allen, D.D., and Brinster, R.L., Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 478–482.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Kervestin, S. and Jacobson, A., Nat. Rev. Mol. Cell Biol., 2012, vol. 13, pp. 700–712.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Schweingruber, C., Rufener, S.C., Zund, D., Yamashita, A., and Muhlemann, O., Biochim. Biophys. Acta, 2013, vol. 1829, pp. 612–623.

    CAS  PubMed  Article  Google Scholar 

  18. Shyu, A.B., Wilkinson, M.F., and van Hoof, A., EMBO J., 2008, vol. 27, pp. 471–481.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Gudikote, J.P., Imam, J.S., Garcia, R.F., and Wilkinson, M.F., Nat. Struct. Mol. Biol., 2005, vol. 12, pp. 801–809.

    CAS  PubMed  Article  Google Scholar 

  20. Usuki, F., Yamashita, A., Higuchi, I., Ohnishi, T., Shiraishi, T., Osame, M., and Ohno, S., Ann. Neurol., 2004, vol. 55, pp. 740–744.

    CAS  PubMed  Article  Google Scholar 

  21. Dongmei, C., Macarthur, P.S., Rong, S., Parks, J.S., and Shelness, G.S., J. Lipid Res., 2010, vol. 51, pp. 849–855.

    Article  Google Scholar 

  22. Shcherbo, D., Merzlyak, E.M., Chepurnykh, T.V., Fradkov, A.F., Ermakova, G.V., Solovieva, E.A., Lukyanov, K.A., Bogdanova, E.A., Zaraisky, A.G., Lukyanov, S., and Chudakov, D.M., Nat. Methods, 2007, vol. 4, pp. 741–746.

    CAS  PubMed  Article  Google Scholar 

  23. Gurskaia, N.G., Staroverov, D.B., Fradkov, A.F., and Luk’ianov, K.A., Russ. J. Bioorg. Chem., 2011, vol. 37, no. 3, pp. 380–382.

    Article  Google Scholar 

  24. Gurskaya N.G., Staroverov, D.B., Zhang, L., Fradkov, A.F., Markina, N.M., Pereverzev, A.P., and Lukyanov, K.A., Nucleic Acids Res., 2012, vol. 40, p. e57.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.C., and Kain, S.R., J. Biol. Chem., 1998, vol. 273, pp. 34970–34975.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Gurskaya.

Additional information

Original Russian Text © A.P. Pereverzev, N.M. Markina, Y.G. Yanushevich, T.V. Gorodnicheva, B.E. Minasyan, K.A. Lukyanov, N.G. Gurskaya, 2014, published in Bioorganicheskaya Khimiya, 2014, Vol. 40, No. 3, pp. 293–296.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereverzev, A.P., Markina, N.M., Yanushevich, Y.G. et al. Intron 2 of human beta-globin in 3′-untranslated region enhances expression of chimeric genes. Russ J Bioorg Chem 40, 269–271 (2014). https://doi.org/10.1134/S106816201403011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816201403011X

Keywords

  • fluorescent protein
  • intron
  • human β-globin
  • NMD
  • chimeric genes 3’-UTR
  • flow cytometry