Skip to main content

Composites of peptide nucleic acids with titanium dioxide nanoparticles. III. Kinetics of PNA dissociation from nanocomposites containing DNA/PNA duplexes

Abstract

When delivering peptide nucleic acids (PNA) into cells in the TiO2 · PL · DNA/PNA nanocomposites consisting of titanium dioxide nanoparticles coated with polylysine (PL) and immobilized DNA/PNA duplexes, it is important to control the rate of the release of PNA from the carrier due to dissociation of the immobilized DNA/PNA duplex, followed by the desorption of PNA to solution while the DNA remains on the carrier. It was found that the rate constant of dissociation of the DNA/PNA duplex in the TiO2 · PL · DNA/PNA nanocomposites depended on the number of complementary bases in the duplex. The half-retention time values for PNA in the studied nanocomposites containing the duplexes with 10, 12, 14, and 16 overlapping complementary base pairs were 10, 14, 22, and 70 min, respectively. Thus, it was shown that the rate of the release of PNA from the proposed nanocomposites can be controlled by varying the number of overlapping complementary base pairs in the immobilized DNA/PNA duplex. The method of the PNA immobilization may be used for designing nanocomposites having the optimum time value of the PNA release. The proposed TiO2 · PL · DNA/PNA nanocomposites can be used to efficiently deliver therapeutically significant PNA drugs for their selective effect on pathogenic nucleic acids in cells.

This is a preview of subscription content, access via your institution.

Abbreviations

PBS:

K-phosphate buffer containing 0.01 M

KH2PO4 :

pH 7.5, and 0.14 M NaCl

PL:

polylysine

TBS:

Tris-HCl buffer containing 0.01 M Tris-HCl, pH7.5, and 0.14 M NaCl

siRNA:

small interfering RNA

NA:

nucleic acids

PNA:

peptide nucleic acid

FluPNA:

fluorescein-labeled PNA

References

  1. Amirkhanov, R.N., Zarytova, V.F., and Amirkhanov, N.V., Russ. J. Bioorg. Chem., 2013, vol. 39, pp. 629–638.

    CAS  Article  Google Scholar 

  2. Wijaya, A., Schaffer, S.B., Pallares, I.G., and Hamad-Schifferli, K., ACS Nano, 2009, vol. 31, pp. 80–86.

    Article  Google Scholar 

  3. Lee, H., Kim, I.K., and Park, T.G., Bioconjug. Chem., 2010, vol. 21, pp. 289–295.

    CAS  PubMed  Article  Google Scholar 

  4. Chen, H.H., Ho, Y.P., Jiang, X., Mao, H.Q., Wang, T.H., and Leong, K.W., Mol. Ther., 2008, vol. 16, pp. 324–332.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Musacchio, T., Vaze, O., D’Souza, G., and Torchilin, V.P., Bioconjug. Chem., 2010, vol. 21, pp. 1530–1536.

    CAS  PubMed  Article  Google Scholar 

  6. Wu, Y., Ho, Y.P., Mao, Y., Wang, X., Yu, B., Leong, K.W., and Lee, L.J., Mol. Pharm., 2011, vol. 8, pp. 1662–1668.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Yu, B., Mao, Y., Bai, L.Y., Herman, S.E., Wang, X., Ramanunni, A., Jin, Y., Mo, X., Cheney, C., Chan, K.K., Jarjoura, D., Marcucci, G., Lee, R.J., Byrd, J.C., Lee, L.J., and Muthusamy, N., Blood, 2013, vol. 121, pp. 136–147.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Scholz, C. and Wagner, E., J. Control. Release, 2012, vol. 161, pp. 554–565.

    CAS  PubMed  Article  Google Scholar 

  9. Kuznetsova, S.A. and Oretskaya, T.S., Ross. Nanotekhnol., 2010, vol. 5, no. 9–10, pp. 40–52.

    Google Scholar 

  10. Liua, G., Swierczewskaa, M., Leea, S., and Chena, C., Nano Today, 2010, vol. 5, pp. 524–539.

    Article  Google Scholar 

  11. Torchilin, V.P., Multifunctional Pharmaceutical Nanocarriers. Series: Fundamental Biomedical Technologies, 2008, issue. XIV., vol. 4, p. 474.

    Google Scholar 

  12. Nielsen, P.E., Peptide Nucleic Acids: Protocols and Applications, Wymondam; United Kingdom: Horizon Bioscience, 2004.

    Google Scholar 

  13. Shiraishi, T. and Nielsen, P.E., in Methods in Molecular Biology, 2011, vol. 751, pp. 209–221.

    CAS  PubMed  Article  Google Scholar 

  14. Antsypovich, S.I., Usp. Khim., 2002, vol. 71, no. 1, pp. 81–96.

    Google Scholar 

  15. Amirkhanov, N.V., Amirkhanov, R.N., Zarytova, V.F., Rus. J. Bioorg. Chem., 2012, vol. 38, pp. 613–624.

    CAS  Article  Google Scholar 

  16. Franano, F.N., Edwards, W.B., Welch, M.J., Brechbiel, M.W., Gansow, O.A., and Duncan, J.R., Magn. Reson. Imaging, 1995, vol. 13, pp. 201–214.

    CAS  PubMed  Article  Google Scholar 

  17. Kobayashi, H., Sato, N., Kawamoto, S., Saga, T., Hiraga, A., Haque, T.L., Ishimori, T., Konishi, J., Togashi, K., and Brechbiel, M.W., Bioconjug. Chem., 2001, vol. 12, pp. 100–107.

    CAS  PubMed  Article  Google Scholar 

  18. Amirkhanov, N., Dimitrov, I., Opitz, A.W., Lai, S., Wagner, N.J., Thakur, M.L., and Wickstrom, E., Biopolymers, 2008, vol. 89, pp. 1061–1076.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Godbey, W.T., Wu, K.K., and Mikos, A.G., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5177–5181.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Wong, H.L., Bendayan, R., Rauth, A.M., Xue, H.Y., Babakhanian, K., and Wu, X.Y., J. Pharmacol. Exp. Ther., 2006, vol. 317, pp. 1372–1381.

    CAS  PubMed  Article  Google Scholar 

  21. Perbal, B., A Practical Guide to Molecular Cloning, New York: Academic Press, 1984.

    Google Scholar 

  22. Rajh, T., Saponjic, Z., Liu, J., Dimitrijevic, N.M., Scherer, N.F., Vega-Arroyo, M., Zapol, P., Curtiss, L.A., and Thurnauer, M.C., Nano Letters, 2004, vol. 4, pp. 1017–1023.

    CAS  Article  Google Scholar 

  23. Richards, E., Handbook of Biochemistry and Molecular Biology: Nucleic Acids, Fasman, G.D., Ed., Cleavland: CRC Press, 1975, vol. 1, p. 589.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Amirkhanov.

Additional information

1 II see in [1].

Original Russian Text © R.N. Amirkhanov, V.F. Zarytova, N.V. Amirkhanov, 2014, published in Bioorganicheskaya Khimiya, 2014, Vol. 40, No. 3, pp. 286–292.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amirkhanov, R.N., Zarytova, V.F. & Amirkhanov, N.V. Composites of peptide nucleic acids with titanium dioxide nanoparticles. III. Kinetics of PNA dissociation from nanocomposites containing DNA/PNA duplexes. Russ J Bioorg Chem 40, 263–268 (2014). https://doi.org/10.1134/S1068162014030030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014030030

Keywords

  • dissociation
  • kinetics
  • drug delivery
  • controlled release
  • DNA/PNA duplexes
  • polylysine
  • nanocomposites
  • peptide nucleic acids
  • nanoparticles
  • titanium dioxide