Skip to main content
Log in

Disordered binding regions of Ewing’s sarcoma fusion proteins

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A relationship was found between the amino acid (AA) composition, intrinsic protein disorder (IPD) and protein binding regions (PBRs) of the functional regions of Ewing’s sarcoma protein (EWS) and oncogenic EWS fusion proteins (EFPs). EWS has high IPD and 64% predicted disordered binding regions (DBRs) by ANCHOR. The native transcription factors, fused to EWS activation domain (EAD) in EFPs, show high DBRs in N-terminal domain and relatively low in C-terminal domain. EFPs oncogenic function is related to IPD and PBRs probabilities, high around breakpoint and decreased in the fused transcription factor. The increased IPD in EAD around (AA 82), and the small RBRs around (AAs (50–60) and 100) are consistent with the reported physical interactions with RNA polymerase II subunits. The AAs (228–264) of EWS, interacting with ZFM1 (SF1), correspond to two peaks of DBRs by Anchor and high IPD by IUPred. The IQ domain of EAD (AAs 258–280) that is phosphorylated by PKC and interacts with calmodulin, has high IPD and DBRs probability. The Ser266, conserved site of PKC phosphorylation, is situated in DBR and IPD region with about 100% probability. The small PBRs found in the EAD correspond to important physical protein-protein interactions, confirmed by experimental data. Thus regions of EWS and EFPs, included in functional interactions with other partners, are enriched of protein binding regions by ANCHOR. The development of IPD- and PBRs-related, EWS-FLI1-directed specific therapies will help the design of antitumor agents against ESFTs because of high patient mortality in cases of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EWS:

Ewing’s sarcoma protein

CTD, NTD:

C- and N-terminal domain

ID:

intrinsic disorder

ISD:

intrinsic structural disorder

IPD:

intrinsic protein disorder

IDPs:

intrinsically disordered proteins

DBRs:

disordered binding regions

EAD:

EWS activation domain

AA:

amino acid

TAD:

transcription activation domain

PBR:

protein binding regions

Pol II:

RNA polymerase II

TF:

transcription factor

ESFT:

Ewing’s sarcoma family of tumors

References

  1. Huang, Y.Q. and Liu, Z.R., Acta Physico-Chimica Sinica, 2010, vol. 26, no. 8, pp. 2061–2072.

    CAS  Google Scholar 

  2. Obradovic, Z.,. Peng, K., Vucetic, S., Radivojac, P., Brown, C.J, and Dunker, A.K., Proteins, 2003, vol. 53, suppl. 6, pp. 566–572.

    Article  CAS  PubMed  Google Scholar 

  3. Hegyi, H., Buday, L., and Tompa, P., PLoS Comput. Biol., 2009, vol. 5, no. 10, p. e1000552. doi:10.1371/ journal.pcbi.1000552

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dosztanyi, Z., Csizmok, V., Tompa, P., and Simon, I., Bioinformatics, 2005, vol. 21, no. 16, pp. 3433–3434.

    Article  CAS  PubMed  Google Scholar 

  5. Linding, R., Russell, R.B., Neduva, V., and Gibson, T.J., Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3701–3708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., and Russell, R.B., Structure, 2003, vol. 11, no. 11, pp. 1453–1459.

    Article  CAS  PubMed  Google Scholar 

  7. Prilusky, J., Felder, C.E., Zeev-Ben-Mordehai, T., Rydberg, E.H., Man, O., Beckmann, J.S., Silman, I., and Sussman, J.L., Bioinformatics, 2005, vol. 21, no. 16, pp. 3435–3438.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Z.R., Thomson, R., McNeil, P., and Esnouf, R.M., Bioinformatics, 2005, vol. 21, no. 16, pp. 3369–3376.

    Article  CAS  PubMed  Google Scholar 

  9. Xue, B., Dunbrack, R.L., Williams, R.W., Dunker, A.K., and Uversky, V.N., Biochim. Biophys. Acta, 2010, vol. 1804, no. 4, pp. 996–1010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dosztanyi, Z., Mészéros, B., and Simon, I., Bioinformatics, 2009, vol. 25, no. 20, pp. 2745–2746.

    Article  CAS  PubMed  Google Scholar 

  11. Pan, S., Ming, KY., Dunn, T.A., Li, KK., and Lee, K.A., Oncogene, 1998, vol. 16, no. 12, pp. 1625–1631.

    Article  CAS  PubMed  Google Scholar 

  12. Todorova, R., Mol. Biol. Rep., 2009, vol. 36, pp. 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  13. Bertolotti, A., Melot, T., Acker, J., Vigneron, M., Dellatre, O., and Tora, L., Mol. Cell Biol., 1998, vol. 18, pp. 1489–1497.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Petermann, R., Mossier, B.M., Aryee, D.N.T., Khazak, V. Golemis, E.A., and Kovar, H., Oncogene, 1998, vol. 17, pp. 603–610, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, H., and Lee, K.A.W., Oncogene, 2001, vol. 20, pp. 1519–1524.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, D., Paley, A.J., and Childs, G., J. Biol. Chem., 1998, vol. 273, pp. 18086–18091.

    Article  CAS  PubMed  Google Scholar 

  17. Bachmaier, R., Aryee, D.N.T., Jug, G., Kauer, M., Kreppel, M., Lee, K.A., and Kovar, H., Oncogene, 2009, vol. 28, pp. 1280–1284.

    Article  CAS  PubMed  Google Scholar 

  18. Deloulme, J.C., Prichard, L., Delattre, O., and Storm, D.R., J. Biol. Chem., 1997, vol. 272, no. 43, pp. 27369–27377.

    Article  CAS  PubMed  Google Scholar 

  19. Erkizan, H.V., Uversky, V.N., and Toretsky, J.A., Clin. Cancer Res., 2010, vol. 16, no. 16, pp. 4077–4083.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li, K.K., and Lee, K.A., J. Biol. Chem., 2000, vol. 275, pp. 23053–23058.

    Article  CAS  PubMed  Google Scholar 

  21. Todorova, R., Adv. Biosci. Biotechnol., 2012, vol., 3, Ng, K.P., Potikyan, G., Savene, R.O.V., Denny, C.T., Uversky, V.N., and Lee, K.A.W., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 479–484.

    Google Scholar 

  22. Ng, K.P., Potikyan, G., Savene, R.O.V., Denny, C.T., Uversky, V.N., and Lee, K.A.W., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 479–484.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, K.A., Adv. Exp. Med. Biol., 2012, vol. 725, pp. 106–125.

    Article  CAS  PubMed  Google Scholar 

  24. Pajkos, M., Mészéros, B., Simon, I., and Dosztanyi, Z., Mol. BioSystems, 2012, vol. 8, no. 1, pp. 296–307.

    Article  CAS  Google Scholar 

  25. Erkizan, H.V., Kong, Y., Merchant, M., Schlottmann, S., Barber-Rotenberg, J.S., Yuan, L., Abaan, O.D., Chou, T.-h, Dakshanamurthy, S., Brown, M.L., Uren, A., and Toretsky, J.A., Nature Med., 2009, vol. 15, no. 7, pp. 750–757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dunker, A.K. and Uversky, V.N., Curr. Opin. Pharmacol., 2010, vol. 10, no. 6, pp. 782–788.

    Article  CAS  PubMed  Google Scholar 

  27. Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E.L.L., Eddy, S.R., Bateman, A., and Finn, R.D., Nucleic Acids Res. (Database Issue), 2012, vol. 40, pp. D290–D301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Todorova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorova, R. Disordered binding regions of Ewing’s sarcoma fusion proteins. Russ J Bioorg Chem 40, 16–25 (2014). https://doi.org/10.1134/S1068162014010117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014010117

Keywords

Navigation