Skip to main content

Energy of interaction in actinomycin-nucleotide complexes


Complexes of the natural heterocyclic antibiotic actinomycin D (AMD) with its putative carriers: purine and pyrimidine nucleotides, as well as with fragmented DNA and phospholipid liposomes have been studied by high-sensitivity spectrophotometry. The antibiotic is not only adsorbed onto the surface of purine clusters but also is incorporated into them. It is especially readily incorporated into unwound DNA regions. The incorporation is accompanied by a long-wavelength shift of the absorption spectrum. From the magnitude of the shift, the energy of interaction was calculated. In the case of AMD in the complex with caffeine and adenosine, it is 2.4 and 2.7 kcal/mol, and in the complex with guanosine and fragmented DNA it is considerably higher, 3.3 and 3.7 kcal/mol. It is assumed that guanosine, adenosine, caffeine and fragmented DNA may serve as carriers of the antibiotic.

This is a preview of subscription content, access via your institution.



actinomycin D


  1. Egorov, N.S., Silaev, A.B., and Katrukha, G.S., Antibiotiki-polipeptidy (Polypeptide Antibiotics), Moscow: Mosk. Gos. Unit., 1987.

    Google Scholar 

  2. Gauze, G.F. and Dudnik, Yu.V., Protivoopukholevye antibiotiki (Anticancer Antibiotics), Moscow: Meditsina, 1987.

    Google Scholar 

  3. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Farber S.J. // (3rd edition), Oxford: Clarendon, 1986.

    Google Scholar 

  4. Clementz, G.L. and Dailey, J.W., Am. Fam. Physician, 1988, vol. 37, pp. 167–170.

    CAS  PubMed  Google Scholar 

  5. Traganos, F., Karpuscinski, J., and Darzynkiewicz, Z., Cancer Res., 1991, vol. 51, pp. 3682–3688.

    CAS  PubMed  Google Scholar 

  6. Farber, S.J., J. Am. Med. Assoc., 1996, vol. 198, pp. 826–836.

    Article  Google Scholar 

  7. Rill, R.L. and Hecker, K.H., Biochemistry, 1996, vol. 35, pp. 3525–3533.

    CAS  PubMed  Article  Google Scholar 

  8. Jeeninga, R.E., Huthoff, H.T., Gultyaev, A.P., and Berkhout, B., Nucleic Acids Res., 1998, vol. 26, no. 23, pp. 5472–5479.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Koba, M. and Konopa, J., Postepy Hig. Med. Dosw. (Online), 2005, vol. 59, pp. 290–298.

    Google Scholar 

  10. Vekshin, N., Savintsev, I., Kovalev, A., Yelemessov, R., and Wadkins, R., J. Phys. Chem. B, 2001, vol. 105, pp. 8461–8467.

    CAS  Article  Google Scholar 

  11. Savintsev, I.V. and Vekshin, N.L., Mol. Biol., 2002, vol. 36, no. 4, pp. 725–730.

    CAS  Article  Google Scholar 

  12. Savintsev, I.V. and Vekshin, N.L., Appl. Biochem. Microbiol., 2004, vol. 40, no. 4, pp. 421–428.

    CAS  Article  Google Scholar 

  13. Vekshin, N.L., Nanotekhnol. Okhr. Zdorov., 2011, vol. 3, no. 2, pp. 7–12.

    Google Scholar 

  14. Vekshin, N.L., RF Patent No. 2372073, 2009.

    Google Scholar 

  15. Vekshin, N.L. and Savintsev, I.V., Biophysics, 2009, vol. 54, no. 6, pp. 1037–1041.

    CAS  Google Scholar 

  16. Vekshin, N.L. and Kovalev, A.E., J. Biochem., 2006, vol. 140, pp. 185–191.

    CAS  PubMed  Article  Google Scholar 

  17. Origlia-Luster, M.L., Patterson, B.A., and Woolley, E.M., J. Chem. Thermodyn., 2002, vol. 34, pp. 1909–1921.

    CAS  Article  Google Scholar 

  18. Davies, D.B., Veselkov, D.A., Djimant, L.N., and Veselkov, A.N., Eur. Biophys. J., 2001, vol. 30, pp. 354–366.

    CAS  PubMed  Article  Google Scholar 

  19. Vekshin, N.L., Photonics of Biopolymers, Berlin: Springer-Verlag, 2002.

    Book  Google Scholar 

  20. Vekshin, N.L., Fluorestsentnaya spektroskopiya biopolimerov (Fluorescence Spectroscopy of Biopolymers), Pushchino: Foton-vek, 2006.

    Google Scholar 

  21. Bitekhtina, M.A. and Vekshin, N.L., Russ. J. Bioorg. Chem., 2008, vol. 34, no. 2, pp. 234–238.

    CAS  Article  Google Scholar 

  22. Vekshin, N.L., Biofizika DNK-aktinomitsinovykh kompleksov (Biophysics of DNA-Actinomycin Complexes), Pushchino: Foton-vek, 2009.

    Google Scholar 

  23. Wadkins, R.M., Vladu, B., and Tunng, C., Biochemistry, 1998, vol. 37, pp. 11915–11923.

    CAS  PubMed  Article  Google Scholar 

  24. Wadkins, R.M., Tunng, C., Vallone, P.M., and Benight, A.S., Arch. Biochem. Biophys., 2000, vol. 384, pp. 199–203.

    CAS  PubMed  Article  Google Scholar 

  25. Chen, F.-M., Sha, F., Chin, K.-H., and Chou, S.-H., Biophys. J., 2003, vol. 84, pp. 432–439.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Vekshin, N.L., J. Biochem., 2011, vol. 149, no. 5, pp. 601–607.

    CAS  PubMed  Article  Google Scholar 

  27. Bittman, R. and Blau, L., Biochemistry, 1975, vol. 14, pp. 2138–2145.

    CAS  PubMed  Article  Google Scholar 

  28. Fox, K.R. and Waring, M.J., Eur. J. Biochem., 1984, vol. 145, pp. 579–586.

    CAS  PubMed  Article  Google Scholar 

  29. Brown, C. and Shafer, R., Biochemistry, 1987, vol. 26, pp. 277–282.

    CAS  PubMed  Article  Google Scholar 

  30. Breslauer, K.J., Methods Enzymol., 1995, vol. 259, pp. 221–242.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. L. Vekshin.

Additional information

Original Russian Text © M.M. Khairetdinova, N.L. Vekshin, 2014, published in Bioorganicheskaya Khimiya, 2014, Vol. 40, No. 1, pp. 64–69.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khairetdinova, M.M., Vekshin, N.L. Energy of interaction in actinomycin-nucleotide complexes. Russ J Bioorg Chem 40, 56–60 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • caffeine
  • adenosine
  • guanosine
  • liposomes
  • fragmented DNA
  • actinomycin