Skip to main content
Log in

Comparative study of samples of powdered and microcrystalline celluloses of different natural origins: Supermolecular structure and the chemical composition of powdered samples

  • Plant Biopolymers
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Methods of wide-angle X-ray scattering (WAXS), high resolution solid-state 13C NMR, and Fourier transform IR-spectroscopy are applied to study supermolecular structures and functional compositions of lignocellulose samples of wood and grass origins and powdered celluloses (PC) obtained from them under identical hydrolysis conditions. It was shown by WAXS that the structure of cellulose I is preserved in samples of powdered celluloses, however, an increased degree of crystallinity and cross-section sizes of crystallites are observed in PC samples. Specific features of changes in the supermolecular structure of cellulose occurred after the hydrolysis, i.e., an increase in the content of cellulose Iβ in PC compared to the initial samples, are established by 13C NMR method. It was shown by means of 13C NMR and Fourier transform IR-spectroscopy that the functional chemical composition of lignocelluloses is weakly affected by the hydrolysis. The presence of residual lignin functional groups in the samples is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shcherbakova, T.P., Kotel’nikova, N.E., and Bykhovtsova, Yu.V., Khim. Rastit. Syr’ya, 2011, no. 3, pp. 33–42.

    Google Scholar 

  2. Segal, L., Creely, J.J., Martin, A.E.Jr., and Conrad, C.M., Textile Res. J., 1962, vol. 29, pp. 786–794.

    Article  Google Scholar 

  3. Scherrer, P., Gottinger Nachrichten Gesell, 1918, vol. 2, pp. 98–100.

    Google Scholar 

  4. Leppanen, K., Andersson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., and Serimaa, R., Cellulose, 2009, vol. 16, no. 6, pp. 999–1015.

    Article  Google Scholar 

  5. Ant-Wuorinen, O., Valtion Teknillinen Tutkimuslaitos, Vol. 44: Tiedotus: Kemia, 1962.

    Google Scholar 

  6. Gümüskaya, E., Usta, M., and Kirci, H., Polym. Degrad. Stabil., 2003, vol. 81, pp. 559–564.

    Article  Google Scholar 

  7. Ruland, W.W., Acta Cryst., 1961, vol. 14, pp. 1180–1185.

    Article  CAS  Google Scholar 

  8. Nakai, Y., Fukuoka, E., Nakajima, S., and Hasegawa, J., Chem. Pharmaceut. Bull., 1977, vol. 25, pp. 96–101.

    Article  CAS  Google Scholar 

  9. El-Sakhawy, M. and Hassan, M.L., Carbohydr. Polym., 2007, vol. 67, pp. 1–10.

    Article  CAS  Google Scholar 

  10. Atalla, R.H. and Vanderhart, D.L., Science, 1984, vol. 223, pp. 283–285.

    Article  PubMed  CAS  Google Scholar 

  11. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., and Stahl, K., Cellulose, 2005, no. 12, pp. 563–576.

    Google Scholar 

  12. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., and Johnson, D.K., Biotechnol. Biofuels, 2010, vol. 3, no. 10, pp. 2–10.

    Google Scholar 

  13. Petropavlovsky, G.A. and Kotelnikova, N.E., Acta Polym., 1985, vol. 36, no. 2, pp. 118–123.

    Article  Google Scholar 

  14. Kotel’nikova, N.E., Petropavlovskii, G.A., and Pogodina, T.E., Khim. Drevesiny, 1980, no. 6, pp. 3–12.

    Google Scholar 

  15. He, J., Tang, Yu., and Wang, Sh.-Yu., Iran. Polym. J., 2007, vol. 16, no. 12, pp. 807–818.

    CAS  Google Scholar 

  16. Renard, C.M.G.C.and Jarvis, M.C., Plant Physiol., 1999, vol. 119, pp. 1315–1322.

    Article  PubMed  CAS  Google Scholar 

  17. Gast, J.C., Atalla, R.H., and McKelvey, R.D., Carbohydr. Res., 1980, vol. 84, no. 1, pp. 137–146.

    Article  CAS  Google Scholar 

  18. Mauni, S.L., Liitia, T., Kauliomaki, S., Hortling, B., and Sundquist, J., Cellulose, 2000, vol. 7, no. 2, pp. 147–159.

    Article  Google Scholar 

  19. Kotel’nikova, N.E., Elkin, A.Yu., Kol’tsov, A.I., Petropavlovskii, G.A., and Sazanov, Yu.N., Metody issledovaniya tsellyulozy (Methods of Study of Cellulose), Riga, 1988, pp. 61–64.

    Google Scholar 

  20. Sun, Y., Lin, L., Deng, H., Li, Y., He, B., Sun, R., and Ouyang, P., BioResources, 2008, no. 3 (2), pp. 297–315.

    Google Scholar 

  21. Newman, R.H., Davies, L.M., and Harris, P.L., Plant, Physiol., 1996, vol. 11, no. 1, pp. 475–485.

    Google Scholar 

  22. Maunu, S.L., Lennholm, A., Larsson, T., and Iversen, T., Carbohydrate Res., 1994, vol. 261, pp. 119–131.

    Article  Google Scholar 

  23. Newman, R.H., Holzforschung, 1998, vol. 52, pp. 157–159.

    Article  CAS  Google Scholar 

  24. Fengel, D., in Cellulose and Cellulose Derivatives: Physico-Chemical Aspects and Industrial Applications, “Cellucon’93”, Lund, Sweden, 1993, pp. 75–84.

    Google Scholar 

  25. Fengel, D., Ludwig, M., and Przyklenk, M., Das Papier, 1992, no. 7, pp. 323–328.

    Google Scholar 

  26. Konturri, E.J., Academic dissertation, Eindhoven, Niedereland: Technische Universiteit, 2005.

    Google Scholar 

  27. Cao, Y. and Tan, H.J., Mol. Struct., 2004, vol. 705, nos. 1–3, pp. 189–193.

    Article  CAS  Google Scholar 

  28. Zhbankov, R.G., Infrakrasnye spektry tsellyulozy i ee proizvodnykh (Infrared Spectra of Cellulose and Its Derivatives), Minsk, 1964.

    Google Scholar 

  29. Kondo, T., Cellulose, 1997, vol. 4, pp. 281–292.

    Article  CAS  Google Scholar 

  30. Pandey, K.K., Polym. Degrad. Stabil., 2005, vol. 90, pp. 9–20.

    Article  CAS  Google Scholar 

  31. Kotelnikova, N.E., Panarin, E.F., Serimaa, R., Paakkari, T., Sukhanova, T.E., and Gribanov, A.V., Cellulosic Pulps, Fibres and Materials, Kennedy, J.F. and Lonnberg, B., Eds., Woodhead, Cambridge, 2000, pp. 169–180.

  32. Kotel’nikova, N.E., Petropavlovskii, G.A., and Khou Yun’fa, Khimiia i delignifikatsiia tselliulozy (Chemistry and Pulp Delignification), Riga, 1991, pp. 79–87.

    Google Scholar 

  33. Petropavlovskii, G.A., Kotel’nikova, N.E., Vasil’eva, V.V., and Volkova, V.A., Cellul. Chem. Technol., 1971, vol. 2, no. 5, pp. 105–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Shcherbakova.

Additional information

Original Russian Text © T.P. Shcherbakova, N.E. Kotel’nikova, Yu.V. Bykhovtsova, 2012, published in Khimiya Rastitel’nogo Syr’ya, 2012, No. 2, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakova, T.P., Kotel’nikova, N.E. & Bykhovtsova, Y.V. Comparative study of samples of powdered and microcrystalline celluloses of different natural origins: Supermolecular structure and the chemical composition of powdered samples. Russ J Bioorg Chem 39, 686–693 (2013). https://doi.org/10.1134/S1068162013070133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013070133

Keywords

Navigation