Skip to main content
Log in

Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict K d of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstarct

Four stepwise multiple linear regressions (SMLR) and a genetic algorithm (GA) based multiple linear regressions (MLR), together with artificial neural network (ANN) models, were applied for quantitative structure-activity relationship (QSAR) modeling of dissociation constants (K d) of 62 arylsulfonamide (ArSA) derivatives as human carbonic anhydrase II (HCA II) inhibitors. The best subsets of molecular descriptors were selected by SMLR and GA-MLR methods. These selected variables were used to generate MLR and ANN models. The predictability power of models was examined by an external test set and cross validation. In addition, some tests were done to examine other aspects of the models. The results show that for certain purposes GA-MLR is better than SMLR and for others, ANN overcomes MLR models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maestrelli, F., Mura, P., Casini, A., Mincione, F., Scozzafava, A., and Supuran, C.T., J. Pharm. Sci., 2002, vol. 91, no. 10, pp. 2211–2219.

    Article  CAS  PubMed  Google Scholar 

  2. Melagraki, G., Afantitis, A., Sarimveis, H., Igglessi-Markopoulou, O., and Supuran, C.T., Bioorgan. Med. Chem., 2006, vol. 14, no. 4, pp. 1108–1114.

    Article  CAS  Google Scholar 

  3. Agrawal, V.K., Banerji, M., Gupta, M., Singh, J., Khadikar, P.V., and Supuran, C.T., Eur. J. Med. Chem., 2005, vol. 40, no. 10, pp. 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  4. Winum, J.Y., Scozzafava, A., Montero, J.L., and Supuran, C.T., Med. Res. Rev., 2005, vol. 25, no. 2, 186–228.

    Article  CAS  PubMed  Google Scholar 

  5. Zimmerman, S., Innocenti, A., Casini, A., Ferry, J.G., Scozzafava, A., and Supuran, C.T., Bioorg. Med. Chem. Lett., 2004, vol. 14, no. 24, pp. 6001–6006.

    Article  CAS  PubMed  Google Scholar 

  6. Chazalette, C., Masereel, B., Rolin, S., Thiry, A., Scozzafava, A., Innocenti, A., and Supuran, C.T., Bioorg. Med. Chem. Lett., 2004, vol. 14, no. 23, pp. 5781–5786.

    Article  CAS  PubMed  Google Scholar 

  7. Rusconi, S., Innocenti, A., Vullo, D., Mastrolorenzo, A., Scozzafava, A., and Supuran, C.T., Bioorg. Med. Chem. Lett., 2004, vol. 14, no. 23, pp. 5763–5767.

    Article  CAS  PubMed  Google Scholar 

  8. Krishnamurthy, V.M., Kaufman, G.K., Urbach, A.R., Gitlin, I., Gudiksen, K.L., Weibel, D.B., and Whitesides, G.M., Chem. Rev., 2008, vol. 108, no. 3, pp. 946–1051.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dashtbozorgi, Z. and Golmohammadi, H., J. Sep. Sci., 2010, vol. 33, nos. 23–24, pp. 3800–3810.

    Article  CAS  PubMed  Google Scholar 

  10. Dashtbozorgi, Z. and Golmohammadi, H., Eur. J. Med. Chem., 2010, vol. 45, no. 6, 2182–2190.

    Article  CAS  PubMed  Google Scholar 

  11. Hansch, C., Hoekman, D., Leo, A., Zhang, L.T., and Li, P., Toxicol. Lett., 1995, vol. 79, nos. 1–3, pp. 45–53.

    Article  CAS  PubMed  Google Scholar 

  12. Krogsgaard-Larsen, P., Frolund, B., and Liljefors, T., Chem. Rec., 2002, vol. 2, no. 6, pp. 419–430.

    Article  CAS  PubMed  Google Scholar 

  13. Consonni, V. and Todeschini, R., Handbook of Molecular Descriptors, Weinheim: Wiley-VCH, 2000.

    Google Scholar 

  14. Deeb, O., Hemmateenejad, B., Jaber, A., Garduno-Juarez, R., and Miri, R., Chemosphere, 2007, vol. 67, no. 11, pp. 2122–2130.

    Article  CAS  PubMed  Google Scholar 

  15. Mandloi, D., Joshi, S., Khadikar, P.V., and Khosla, N., Bioorg. Med. Chem. Lett., 2005, vol. 15, no. 2, pp. 405–411.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, T., Khan, I.A., Avery, M.A., Grant, J., and Meshnick, S.R., Antimicrob. Agents Ch., 1998, vol. 42, no. 6, pp. 1454–1458.

    CAS  Google Scholar 

  17. Thakur, A., Thakur, M., Khadikar, P.V., Supuran, C.T., and Sudele, P., Bioorgan. Med. Chem., 2004, vol. 12, no. 4, pp. 789–793.

    Article  CAS  Google Scholar 

  18. Hatami, T., Rahimi, M., Daraei, H., Heidaryan, E., Alsairafi, A.A., and Korean, J., Chem. Eng., 2012, vol. 29, no. 5, pp. 657–667.

    CAS  Google Scholar 

  19. Daraei, H., Irandoust, M., Ghasemi, J.B., and Kurdian, A.R., J. Incl. Phenom. Macro., 2012, vol. 72, nos. 3–4, pp. 423–435.

    Article  CAS  Google Scholar 

  20. Depczynski, U., Frost, V.J., and Molt, K., Anal. Chim. Acta, 2000, vol. 420, no. 2, pp. 217–227.

    Article  CAS  Google Scholar 

  21. Jouanrimbaud, D., Massart, D.L., Leardi, R., and Denoord, O.E., Anal. Chem., 1995, vol. 67, no. 23, pp. 4295–4301.

    Article  CAS  Google Scholar 

  22. Maleki, A., Daraei, H., Alaei, L., Abasi, L., and Izadi, A., J. Chem. Soc. Pak., 2012, vol. 34, no. 5, pp. 1056–1069.

    CAS  Google Scholar 

  23. Rocha, Pita S.S., Albuquerque, M.G., Rodrigues, C.R., Castro, H.C., and Hopfinger, A.J., Chem. Biol. Drug Design, 2012, vol. 79, no. 5, pp. 740–748.

    Article  Google Scholar 

  24. Magee P.S., Quantitative Structure-Activity Relationships, 1990, vol. 9, no. 3, pp. 202–215.

    Article  CAS  Google Scholar 

  25. Jalali-Heravi, M., Asadollahi-Baboli, M., and Shahbazikhah, P., Eur. J. Med. Chem., 2008, vol. 43, no. 3, pp. 548–556.

    Article  CAS  PubMed  Google Scholar 

  26. Nieto, M., Alovero, F., Manzo, R., and Mazzieri, M.R., Eur. J. Med. Chem., 2005, vol. 40, no. 4, pp. 361–369.

    Article  CAS  PubMed  Google Scholar 

  27. Rastija, V. and Medić-Šarić, M., Eur. J. Med. Chem., 2009, vol. 44, no. 1, pp. 400–408.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, P., Singh, P., and Singh, J.P., Int. J. Res. Pharm. Biomed. Sci., 2012, vol. 3, no. 1, pp. 65–72.

    Google Scholar 

  29. Glasstone, S., Thermodynamics for Chemists, Huntington: R.E. Krieger Pub. Co., 1972.

    Google Scholar 

  30. Ivanciuc, O., Ivanciuc, T., Klein, D.J., Seitz, W.A., and Balaban, A.T., J.Chem. Inf. Comput. Sci., 2001, vol. 41, no. 3, pp. 536–549.

    Article  CAS  PubMed  Google Scholar 

  31. Dong, H.W. and Guo, X.F., Match-Commun. Math. Co., 2010, vol. 63, no. 3, pp. 799–812.

    Google Scholar 

  32. Rücker, C., Scarsi, M., and Meringer, M., Bioorgan. Med. Chem., 2006, vol. 14, no. 15, pp. 5178–5195.

    Article  Google Scholar 

  33. Hemalatha, R., Soni, L., Gupta, A., and Kaskhedikar, S., E-Journal of Chemistry, 1900, vol. 1, no. 5, pp. 243–250.

    Article  Google Scholar 

  34. Chen, L., Yao, J., and Yang, J., Acta Pharmacol. Sin., 2005, vol. 26, no. 11, pp. 1322–1333.

    Article  CAS  PubMed  Google Scholar 

  35. Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P.A., Markopoulos, J., and Igglessi-Markopoulou, O., Polymer, 2006, vol. 47, no. 9, pp. 3240–3248.

    Article  CAS  Google Scholar 

  36. Rucker, C., Rucker, G., and Meringer, M., J. Chem. Inf. Model., 2007, vol. 47, no. 6, pp. 2345–2357.

    Article  PubMed  Google Scholar 

  37. Karki, R.G. and Kulkarni, V.M., Bioorgan. Med. Chem., 2001, vol. 9, no. 12, pp. 3153–3160.

    Article  CAS  Google Scholar 

  38. Kovarich, S., Papa, E., and Gramatica, P., J. Hazard. Mater., 2011, vol. 190, nos. 1–3, pp. 106–112.

    Article  CAS  PubMed  Google Scholar 

  39. Topliss, J.G. and Edwards, R.P., J. Med. Chem., 1979, vol. 22, no. 10, pp. 1238–1244.

    Article  CAS  PubMed  Google Scholar 

  40. Su, L., Li, L., Li, Y., Zhang, X., Huang, X., and Zhai, H., Med. Chem. Res., 2011, pp. 1–18.

    Google Scholar 

  41. Asadollahi, T., Dadfarnia, S., Shabani, A.M.H., Ghasemi, J.B., and Sarkhosh, M., Molecules, 2011, vol. 16, no. 3, pp. 1928–1955.

    Article  CAS  PubMed  Google Scholar 

  42. Li, F., Wu, H.F., Li, L.Z., Li, X.H., Zhao, J.M., and Peijnenburg, W.J.G.M., Ecotox. Environ. Saf., 2012, vol. 80, pp. 273–279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiua Daraei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleki, A., Daraei, H., Alaei, L. et al. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict K d of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors. Russ J Bioorg Chem 40, 61–75 (2014). https://doi.org/10.1134/S106816201306006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816201306006X

Keywords

Navigation