Skip to main content

Lipophilic prodrugs of a triazole-containing colchicine analogue in liposomes: Biological effects on human tumor cells

Abstract

Colchicine site binders—blockers of tubulin polymerization—are potential antimitotic agents for anticancer therapy. To reduce their systemic toxicity and improve biodistribution, encapsulation in nanosized liposomes may be employed. Liposomes present a convenient means for preparation of injectable for-mulations of hydrophobic compounds, however colchicine as such is known to leak through the lipid bilayer. In this study, newly synthesized triazole-containing analogues of colchicine and allocolchicine, and their palmitic and oleic esters (lipophilic prodrugs) were tested for anti-proliferative activity and apoptosis-inducing potential. In contrast to colchicine conjugates, whose activities ranged with those of colchicine, allocolchicine derivatives exhibited drastically lower effects and were discarded. Liposomes of about 100 nm in diameter composed of egg phosphatidylcholine-yeast phosphatidylinositol-palmitic or oleic prodrug, 8: 1: 1, by mol, were prepared by standard extrusion technique and tested in a panel of four human tumor cell lines. Liposome formulations preserved the biological activities of the parent colchicinoid the most towards human epithelial tumor cells. Moreover, liposomal form of the oleoyl bearing colchicinoid inhibited cell proliferation more efficiently than free lipophilic prodrug. Due to substantial loading capacity of the liposomes, the dispersions contain sufficient concentration of the active agent to test wide dose range in experiments on systemic administration to animals.

This is a preview of subscription content, access via your institution.

Abbreviations

EPR:

enhanced permeability and retention

PEG:

polyethylene glycol

LDH:

lactate dehydrogenase

PC:

phosphatidylcholine

PI:

phosphatidylinositol

PBS:

phosphate buffered saline

DAPI:

4′,6-diamidino-2-phenylindol

EGTA:

ethylene glycol tetraacetic acid

PIPES:

piperazine-N,N-bis(2-ethanesulfonic acid)

References

  1. Li, Q. and Sham, H.L., Expert Opin. Ther. Pat., 2002, vol. 12, pp. 1663–1702.

    Article  CAS  Google Scholar 

  2. Bhattacharyya, B., Panda, D., Gupta, S., and Banerjee, M., Med. Res. Rev., 2008, vol. 28, pp. 155–183.

    PubMed  Article  CAS  Google Scholar 

  3. Tron, G.C., Pirali, T., Sorba, G., Pagliai, F., Busacca, S., and Genazzani, A., J. Med. Chem, 2006, vol. 49, pp. 3033–3044.

    PubMed  Article  CAS  Google Scholar 

  4. Buttner, F., Bergemann, S., Guenard, D., Gust, R., Seitz, G., and Thoret, S., Bioorg. Med. Chem., 2005, vol. 13, pp. 3497–3511.

    PubMed  Article  Google Scholar 

  5. Allen, T.M. and Cullis, P.R., Science, 2004, vol. 303, pp. 1818–1822.

    PubMed  Article  CAS  Google Scholar 

  6. Maeda, H., Sawa, T., and Konno, T., J. Controlled Release, 2001, vol. 74, pp. 47–61.

    Article  CAS  Google Scholar 

  7. Zucker, D., Marcus, D., Barenholz, Y., and Goldblum, A., J. Controlled Release, 2009, vol. 139, pp. 73–80.

    Article  CAS  Google Scholar 

  8. Mons, S., Veretout, F., Carlier, M.F., Erk, I., Lepault, J., Trudel, E., Salesse, C., Ducray, P., Mioskowski, C., and Lebeau, L., Biochim. Biophys. Acta, 2000, vol. 1468, pp. 381–395.

    PubMed  Article  CAS  Google Scholar 

  9. Crielaard, B.J., van der Wal, S., Le, H.T., Bode, A.T.L., Lammers, T., Hennink, W.E., Schiffelers, R.M., Fens, M.H., and Storm, G., Eur. J. Pharm. Sci., 2012, vol. 45, pp. 429–435.

    PubMed  Article  CAS  Google Scholar 

  10. Schwendener, R. and Schott, H., Methods, Enzymol., 2005, vol. 391, pp. 58–70.

    Article  CAS  Google Scholar 

  11. Crosasso, P., Brusa, P., Dosio, F., Arpicco, S., Pacchioni, D., Schuber, F., and Cattel, L., J. Pharm. Sci., 1997, vol. 86, pp. 832–839.

    PubMed  Article  CAS  Google Scholar 

  12. Immordino, M.L., Brusa, P., Rocco, F., Arpicco, S., Ceruti, M., and Cattel, L., J. Controlled Release, 2004, vol. 100, pp. 331–346.

    Article  CAS  Google Scholar 

  13. Gabizon, A., Amitay, Y., Tzemach, D., Gorin, J., Shmeeda, H., and Zalipsky, S., J. Controlled Release, 2012, vol. 160, pp. 245–253.

    Article  CAS  Google Scholar 

  14. Vodovozova, E.L., Moiseeva, E.V., Grechko, G.K., Gayenko, G.P., Nifant’ev, N.E., Bovin, N.V., and Molotkovsky, J.G., Eur. J. Cancer, 2000, vol. 36, pp. 942–949.

    PubMed  Article  CAS  Google Scholar 

  15. Nicolaus, N., Reball, J., Sitnikov, N., Velder, J., Termath, A., Fedorov, A.Yu., and Schmalz, H.-G., Heterocycles, 2011, vol. 82, pp. 1585–1600.

    CAS  Google Scholar 

  16. Nicolaus, N., Janet, Z., Riesterer, P., Neudorfl, J.-M., Prokop, A., Oschkinat, H., and Schmalz, H.-G., Chem. Med. Chem., 2010, vol. 5, pp. 661–665.

    PubMed  CAS  Google Scholar 

  17. Liederer, B.M. and Borchardt, R.T., J. Pharm. Sci., 2006, vol. 95, pp. 1177–1195.

    PubMed  Article  CAS  Google Scholar 

  18. Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H.G., Daniel, P.T., and Henze, G., Leukemia, 2001, vol. 15, pp. 1735–1742.

    PubMed  Article  CAS  Google Scholar 

  19. Mayer, L.D., Hope, M.J., and Cullis, P.R., Biochim. Biophys. Acta, 1986, vol. 858, pp. 161–168.

    PubMed  Article  CAS  Google Scholar 

  20. Kuznetsova, N., Kandyba, A., Vostrov, I., Kadykov, V., Gaenko, G., Molotkovsky, J., and Vodovozova, E., J. Drug Deliv. Sci. Techn., 2009, vol. 19, pp. 51–59.

    CAS  Google Scholar 

  21. Gabizon, A. and Papahadjopoulos, D., Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, pp. 6949–6953.

    PubMed  Article  CAS  Google Scholar 

  22. Muller, M., Zschornig, O., Ohki, S., Arnold, K., J. Membrane Biol., 2003, vol. 192, pp. 33–43.

    Article  CAS  Google Scholar 

  23. Moghimi, S.M., Andersen, A.J., Hashemi, S.H., Lettiero, B., Ahmadvand, D., Hunter, A.C., Andresen, T.L., Hamad, I., and Szebeni, J., J. Controlled Release, 2010, vol. 146, pp. 175–181.

    Article  CAS  Google Scholar 

  24. Mosmann, T.J., Immunol. Methods, 1983, vol. 65, pp. 55–63.

    Article  CAS  Google Scholar 

  25. Sahay, G., Alakhova, D.Y., and Kabanov, A.V., J. Controlled Release, 2010, vol. 145, pp. 182–195.

    Article  CAS  Google Scholar 

  26. Menezes, D.E.L., Kirchmeier, M.J., Gagne, J.F., Pilarski, L.M., and Allen, T.M., J. Liposome Res., 1999, vol. 9, pp. 199–228.

    Article  Google Scholar 

  27. Shmeeda, H., Amitay, Y., Gorin, J., Tzemach, D., Mak, L., Ogorka, J., Kumar, S., Zhang, J.A., and Gabizon, A., J. Controlled Release, 2010, vol. 146, pp. 76–83.

    Article  CAS  Google Scholar 

  28. Bartlett, G.R., J. Biol. Chem., 1959, vol. 234, pp. 466–468.

    PubMed  CAS  Google Scholar 

  29. Bonne, D., Heusele, C., Simon, C., and Pantaloni, D., J. Biol. Chem., 1985, vol. 260, pp. 2819–2825.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Vodovozova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuznetsova, N.R., Svirshchevskaya, E.V., Sitnikov, N.S. et al. Lipophilic prodrugs of a triazole-containing colchicine analogue in liposomes: Biological effects on human tumor cells. Russ J Bioorg Chem 39, 543–552 (2013). https://doi.org/10.1134/S1068162013050105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013050105

Keywords

  • liposomes
  • colchicinoids
  • lipophilic prodrugs
  • fatty acid esters
  • anti-proliferative activity
  • proapoptotic activity