Skip to main content

The arsenolysis reaction in the biotechnological synthesis of ribavirin. The in vitro and in vivo inhibition of influenza A virus replication with a combination of ribavirin and ozeltamivir

Abstract

The biotechnological method of synthesis of the antiviral drug ribavirin based on the transglycosylation reaction was improved due to the addition of catalytic amounts of sodium arsenate. This approach allows us to hydrolyze the excess natural nucleoside guanosine, a ribose donor, and, hence, made the composition of the reaction mixture less complicated, thus facilitating the process of ribavirin isolation. It was shown that in cell cultures the combination of ribavirin and oseltamivir carboxylate inhibited the replication of the influenza A virus more effectively than each of them alone. Similar results were obtained in experiments on laboratory animals (mouse Balb/c) infected with the influenza A virus H3N2/Aichi/68 strain.

This is a preview of subscription content, access via your institution.

Abbreviations

TCA:

1H-1,2,4-triazol-3-carboxamide

CD50 :

50% cytotoxic dose

CPE:

virus specific cytopathogenic effect

PNP:

purine nucleoside phosphorylase

References

  1. Hayden, F.G., Slepushkin, A.N., and Pushkarskaya, N.L., J. Antimicrob. Agents Chemother., 1984, vol. 25, no. 1, pp. 53–57.

    Article  CAS  Google Scholar 

  2. Govorkova, E.A., Fang, H.B., Tan, M., and Webster, R.G., J. Antimicrob. Agents Chemother., 2004, vol. 48, no. 7, pp. 4855–4863.

    CAS  Google Scholar 

  3. Smee, D.F., Hurst, B.L., Wong, M.-H., Bailey, K.W., and Morrey, J.D., J. Antimicrob. Agents Chemother., 2009, vol. 53, no. 5, pp. 2120–2128.

    Article  CAS  Google Scholar 

  4. Kwong, A.D., Kauffman, R.S., Hurter, P., and Mueller, P., Nature Biotechnol., 2011, vol. 29, pp. 993–1003.

    Article  CAS  Google Scholar 

  5. Galegov, G.A., Pushkarskaya, N.L., Obrosova-Serova, N.P., and Zhdanov, V.M., Experiencia, 1977, vol. 33, pp. 905–906.

    Article  CAS  Google Scholar 

  6. Hézode, C., Forestier, N., Dusheiko, G., Ferenci, P., Pol, S., Goeser, T., Bronowicki, J.-P., Bourliere, M., Gharakhanian, S., Bengtsson, L., McNair, L., Kieffer, Sh., Kwong, A., Kauffman, R.S., Alam, J., Pawlotsky, J.-M., and Zeuzem, S., N. Engl. J. Med., 2009, vol. 360, pp. 1839–1850.

    PubMed  Article  Google Scholar 

  7. Ling, L.M., Chow, A.L., Lye, D.C., Tan, A.S., Krishnan, P., Cui, L., Win, N.N., Chan, M., Lim, P.L., Lee, C.C., and Leo, Y.S., Clin. Infect. Dis., 2010, vol. 50, pp. 963–969.

    PubMed  Article  CAS  Google Scholar 

  8. Konstantinova, I.D., Esipov, R.S., Murav’eva, T.I., Taran, S.A., Verevkina, K.N., Gurevich, A.I., Feofanov, S.A., and Miroshnikov, A.I., RF Patent No. 2230118, 2004.

  9. Hennen, W.J. and Wong, C.-H., Org. Chem., 1989, vol. 54, pp. 4692–4695.

    Article  CAS  Google Scholar 

  10. Konstantinova, I.D., Chudinov, M.V., Fateev, I.V., Matveev, A.V., Zhurilo, N.I., Shvets, V.I., and Miroshnikov, A.I., Russ. J. Bioorg. Chem., 2013, vol. 39, pp. 52–70.

    Google Scholar 

  11. Mikhailopulo, I.A. and Miroshnikov, A.I., Acta Naturae, 2010, vol. 2, pp. 38–61.

    Google Scholar 

  12. Bzowska, A., Kulikowska, E., and Shugar, D., Pharmacol. Ther., 2000, vol. 88, pp. 349–425.

    PubMed  Article  CAS  Google Scholar 

  13. Mikhailopulo, I.A., Curr. Org. Chem., 2007, vol. 11, pp. 317–335.

    Article  CAS  Google Scholar 

  14. Konstantinova, I.D., Fateev, I.V., Muzyka, I.S., Galkina, I.V., Butenko, A.M., Galegov, G.A., Belov, A.V., Larichev, V.F., Deryabin, P.G., Shvets, V.I., L’vov, D.K., and Miroshnikov, A.I., Biotekhnologiya, 2008, no. 4, pp. 69–79.

    Google Scholar 

  15. Esipov, R.S., Gurevich, A.I., Miroshnikov, A.I., and Chuvikovskii, D.V., RF Patent No. 2179188, 2002.

  16. Esipov, R.S., Gurevich, A.I., Chuvikovsky, D.V., Chupova, L.A., Muravyova, T.I., and Miroshnikov, A.I., Protein Expes. Purif., 2002, vol. 24, pp. 56–60.

    Article  CAS  Google Scholar 

  17. Kline, P.C. and Schramm, V.L., Biochemistry, 1993, vol. 32, pp. 13212–13219.

    PubMed  Article  CAS  Google Scholar 

  18. Schramm, V.L., J. Biol. Chem., 2007, vol. 282, pp. 28297–28300.

    PubMed  Article  CAS  Google Scholar 

  19. Chipen, G.I. and Grinshtein, V.Ya., Chem. Heterocycl. Comp., 1965, vol. T. 1, p. 420.

    Google Scholar 

  20. Knight, V., Wilson, S.Z., and Wide, P.R., Ribavirin a Broad Spectrum Antiviral Agent, Smith, R.A., Ed., Academ. Press, 1981, pp. 129–146.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Konstantinova.

Additional information

Original Russian Text © I.D. Konstantinova, I.V. Fateev, G.A. Galegov, P.G. Deryabin, A.G. Botikov, I.S. Muzyka, D.K. L’vov, A.I. Miroshnikov, 2013, published in Bioorganicheskaya Khimiya, 2013, Vol. 39, No. 5, pp. 594–603.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konstantinova, I.D., Fateev, I.V., Galegov, G.A. et al. The arsenolysis reaction in the biotechnological synthesis of ribavirin. The in vitro and in vivo inhibition of influenza A virus replication with a combination of ribavirin and ozeltamivir. Russ J Bioorg Chem 39, 530–538 (2013). https://doi.org/10.1134/S1068162013050099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013050099

Keywords

  • influenza A
  • E. coli nucleoside phosphorylases
  • oseltamivir carboxylate
  • ribavirin
  • transglycosylation
  • 1-H-1,2,4-triazole-3-carboxamide
  • viramidin