Skip to main content

Incorporation of proteins into polyelectrolyte microcapsules by coprecipitation and adsorption

Adapted from a report presented at the VI Russian Symposium “Proteins and Peptides” (June 11–15, 2013)

Abstract

Microcapsules composed of synthetic (sodium polystyrene sulfonate and polyallylamine hydrochloride) and biodegradable polyelectrolytes (dextran sulfate and polyarginine hydrochloride) deposited on carbonate microparticles have been obtained. The ultrastructural organization of biodegradable microcapsules has been studied by transmission electron microscopy. The shell of biodegradable microcapsules is well formed even after the deposition of six polyelectrolyte layers and has an average thickness of 44 ± 3.0 nm; their inner polyelectrolyte matrix is less branched than that of synthetic microcapsules. By using spectroscopy, the efficiency of the encapsulation of FITC-labeled BSA by adsorption depending on the number of PE layers in the capsule has been estimated. It has been shown that the maximum amount of the protein is incorporated into capsules comprising six and seven polyelectrolyte layers (4 and 2 pg/capsule, respectively). It has been concluded that the adsorption of proteins into preformed polyelectrolyte capsules enables one to avoid protein losses that occur with the method in which biomineral cores obtained by coprecipitation are used for encapsulation.

This is a preview of subscription content, access via your institution.

Abbreviations

BSA:

bovine serum albumin

DS:

dextran sulfate

EDTA:

ethylenediaminetetraacetic acid

FITC:

fluorescein isothiocyanate

IPEC:

interpolyelectrolyte complex

PAH:

polyallylamine hydrochloride

PAr:

polyarginine hydrochloride

PE:

polyelectrolyte

PEMC:

polyelectrolyte microcapsule

References

  1. Sukhorukov, G.B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V.I., and Mohwald, H., Polym. Adv. Technol., 1998, vol. 9, pp. 759–767.

    Article  CAS  Google Scholar 

  2. Inozemtseva, O.A., Portnov, S.A., Kolesnikova, T.A., and Gorin, D.A., Ross. Nanotekhnol., 2007, vol. 2, pp. 68–80.

    Google Scholar 

  3. Dubrovskii, A.V., Shabarchina, L.I., Kim, Yu.A., and Sukhorukov, B.I., Zh. Fiz. Khim., 2006, vol. 80, pp. 1914–1919.

    Google Scholar 

  4. Voigt, A., Lichtenfeld, G.B., Sukhorukov, G.B., Zastrov, H., Donath, E., Baumler, H., and Mohwald, H., Ind. Eng. Chem. Res., 1999, vol. 38, pp. 4037–4043.

    Article  CAS  Google Scholar 

  5. Donath, E., Sukhorukov, G.B., Caruso, F., Davis, S.A., and Mohwald, H., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, pp. 2202–2205.

    Article  CAS  Google Scholar 

  6. Volodkin, D.V., Petrov, A.I., Petrov, M., and Sukhorukov, G.B., Langmuir, 2004, vol. 20, pp. 3398–3406.

    PubMed  Article  CAS  Google Scholar 

  7. Kazakova, L.I., Dubrovskii, A.V., Moshkov, D.A., Shabarchina, L.I., and Sukhorukov, B.I., Biofizika, 2007, vol. 52, pp. 850–854.

    PubMed  CAS  Google Scholar 

  8. Studer, D., Palankar, R., Bédard, M., Winterhalter, M., and Springer, S., Small, 2010, vol. 6, pp. 2412–2419.

    PubMed  Article  CAS  Google Scholar 

  9. Kazakova, L.I., Shabarchina, L.I., and Sukhorukov, G.B., Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 11110–11117.

    PubMed  Article  CAS  Google Scholar 

  10. Del Mercato, L.L., Abbasi, A.Z., Ochs, M., and Parak, W.J., ACS Nano, 2011, vol. 5, pp. 9668–9674.

    PubMed  Article  Google Scholar 

  11. De Koker, S., De Cock, L.J., Rivera-Gil, P., Parak, W.J., Velty, R.A., Vervaet, C., Remon, J.P., and De Geest, B.J., Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 748–761.

    PubMed  Article  Google Scholar 

  12. De Geest, B.J., Dejugnat, C., Verhoeven, E., Sukhorukov, G.B., Jonas, A.V., Plain, J., Demeester, J., and De Smedt, S.C., J. Controlled Rerlease, 2006, vol. 116, pp. 159–169.

    Article  Google Scholar 

  13. De Koker, S., De Geest, B.J., Singh, S.K., De Rycke, R., Naessens, T., Van Kooyk, Y., Demeester, J., and De Smedt, S.C., Angewandte Chemie (Int. Ed.), 2009, vol. 48, pp. 8485–8489.

    Article  Google Scholar 

  14. Borodina, T.N., Rumsh, L.D., Kunizhev, S.M., Sukhorukov, G.B., Vorozhtsov, G.N., Fel’dman, B.M., Rusanova, A.V., Vasil’eva, T.V., Strukova, S.M., and Markvicheva, E.A., Biomed. Khim., 2007, vol. 53, pp. 662–671.

    PubMed  CAS  Google Scholar 

  15. Borodina, T.N., Rumsh, L.D., Kunizhev, S.M., Sukhorukov, G.B., Vorozhtsov, G.N., Fel’dman, B.M., and Markvicheva, E.A., Biomed. Khim., 2007, vol. 53, pp. 557–565.

    PubMed  CAS  Google Scholar 

  16. She, Zhen, Antipina, M.N., Li, Jun, and Sukhorukov, G.B., Biomacromolecules, 2010, vol. 11, pp. 1241–1247.

    PubMed  Article  CAS  Google Scholar 

  17. Volodkin, D.V., Larionova, N.I., and Sukhorukov, G.B., Biomacromolecules, 2004, vol. 5, pp. 1962–1972.

    PubMed  Article  CAS  Google Scholar 

  18. Qi, W., Yan, X.H., Juan, L., Cui, Y., and Li, J.B., Biomacromolecules, 2009, vol. 10, pp. 1212–1216.

    PubMed  Article  CAS  Google Scholar 

  19. Antipov, A.A., Sukhorukov, G.B., Donat, E., and Möhwald, H., J. Phys. Chem. B, 2001, vol. 105, pp. 2281–2284.

    Article  CAS  Google Scholar 

  20. Balabushevich, N.G., Tiourina, O.P., Volodkin, D.V., Larionova, N.I., and Sukhorukov, G.B., Biomacromolecules, 2003, vol. 4, pp. 1191–1197.

    PubMed  Article  CAS  Google Scholar 

  21. Tiourina, O.P., Antipov, A.A., Sukhorukov, G.B., Larionova, N.I., Lvov, Y., and Möhwald, H., Macromol. Biosci., 2001, vol. 1, pp. 209–214.

    Article  CAS  Google Scholar 

  22. Antipov, A.A., Shchukin, D., Fedutik, Y., Petrov, A.I., Sukhorukov, G.B., and Mohwald, H., Colloid. Surf.: Physicochem. Eng. Aspect, 2003, vol. 224, pp. 175–184.

    Article  CAS  Google Scholar 

  23. Sukhorukov, G.B., Volodkin, D.V., Gunther, A.M., Petrov, A.I., Shenoy, D.V., and Möhwald, H., J. Mater. Chem., 2004, vol. 14, pp. 2073–2081.

    Article  CAS  Google Scholar 

  24. Petrov, A.I., Volodkin, D.V., and Sukhorukov, G.B., Biotechnol. Prog., 2005, vol. 21, pp. 918–925.

    PubMed  Article  CAS  Google Scholar 

  25. Kazakova, L.I., Dubrovskii, A.V., Santalova, I.M., Moshkov, D.A., Apolonnik, N.V., and Shabarchina, L.I., Russ. J. Bioorg. Chem., 2012, vol. 38, pp. 51–55.

    Article  CAS  Google Scholar 

  26. Balabushevich, N.G., Sukhorukov, G.B., and Larionova, N.I., Vestn. Mosk. Univ. Ser. 2 Khim., 2002, vol. 43, pp. 374–377.

    CAS  Google Scholar 

  27. Moshkov, D.A., in Adaptatsiya i ul’trastruktura neirona (Adaptation and Neuron Ultrastructure), Moscow: Nauka, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Kochetkova.

Additional information

Original Russian Text © O.Yu. Kochetkova, L.I. Kazakova, D.A. Moshkov, M.G. Vinokurov, L.I. Shabarchina, 2013, published in Bioorganicheskaya Khimiya, 2013, Vol. 39, No. 5, pp. 565–571.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kochetkova, O.Y., Kazakova, L.I., Moshkov, D.A. et al. Incorporation of proteins into polyelectrolyte microcapsules by coprecipitation and adsorption. Russ J Bioorg Chem 39, 504–509 (2013). https://doi.org/10.1134/S1068162013050087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013050087

Keywords

  • polyelectrolyte microcapsules
  • polyelectrolytes
  • coprecipitation
  • electron microscopy
  • encapsulation