Skip to main content

Synthesis and antimicrobial activity of new heterocyclic compounds containing thieno[3,2-c]coumarin and pyrazolo[4,3-c]coumarin frameworks

Abstract

Reaction of 4-chlorocoumarin-3-carbonitrile with ethyl thioglycolate and ethyl glycinate hydrochloride leads to a series of title products. Hydrazinolysis of amino thienocoumarin carboxylate afforded the hydrazino derivative which underwent various reactions to build new heterocyclic rings containing thienocoumarin moiety. Chloro acetylation of aminoester compound afforded the chloro acetyl amino which underwent nucleophilic substitution reactions with various amines. The following treatment with formaldehyde under Mannich conditions afforded the corresponding imidazo derivatives. Reaction of chloroacetylamino with potassium thiocyanate yielded ethylpyrimidothieno coumarin sulfanylacetate which was used as a versatile precursor for synthesis of other heterocycles. On the other hand, reaction of chloro coumarin carbonitrile with hydrazine gave the aminopyrazolocoumaine which reacted with bifunctionally compounds to give the substituted pyrimido derivatives. Diazotization and coupling of aminopyrazole with ethylcyanoacetate yielded ethylaminotriazinopyrazolocoumarine carboxylate. Several of the compounds obtained demonstrated considerable antifungal and antibacterial activity in the in vitro test systems.

This is a preview of subscription content, access via your institution.

References

  1. Spath, E., Die natiirlichen Cumarine. Ber., 1937, vol. 70A, pp. 83–117.

    CAS  Google Scholar 

  2. Chimichi, S., Boccalini, M., Cosimelli, B., Viola, G., Vedaldi, D., and Dall Acqua, F., Tetrahedron Lett., 2002, vol. 43, pp. 7473–7476.

    Article  CAS  Google Scholar 

  3. Bhat, M.A., Siddiqui, N., and Khan, S.A., Indian J. Pharm., Sci., 2006, vol. 68, pp. 120–124.

    Article  CAS  Google Scholar 

  4. Cruzzocrea, S., Mazzon, E., Bevilaqua, C., and Constantino, G., Br. J. Pharmacol., 2000, vol. 131, no. 7, pp. 1399–1407.

    Article  Google Scholar 

  5. Ma, T., Liu, L., Xue, H., Li, L., Han, C., Wang, L., Chen, Z., and Liu, G., J. Med. Chem., 2008, vol. 51, pp. 1432–1446.

    PubMed  Article  CAS  Google Scholar 

  6. Kidane, A.G., Salacinski, H., Tiwari, A., Bruckdorfer, K.R., and Seifalian, A.M., Biomacromolecules, 2004, vol. 5, pp. 798–813.

    PubMed  Article  CAS  Google Scholar 

  7. Appendino, G., Mercalli, E., Fuzzati, N., Arnoldi, L., Stavri, M., Gibbons, S., Ballero, M., and Maxia, A., J. Nat. Prod., 2004, vol. 67, pp. 2108–2110.

    PubMed  Article  CAS  Google Scholar 

  8. Kontogiorgis, C.A. and Hadjipavlou, L.D., Bioorg. Med. Chem. Lett., 2004, vol. 14, pp. 611–661.

    PubMed  Article  CAS  Google Scholar 

  9. Delaney, B., Phillips, K., Buswell, D., Mowry, H.B., and Nickels, D., Food Chem. Toxicol., 2001, vol. 39, pp. 1087–1094.

    PubMed  Article  CAS  Google Scholar 

  10. Fylaktakidou, K.C., Hadjipavlou, L.D., Litinas, K.E., and Nicolaides, D.N., Curr. Pharm. Des., 2004, vol. 10, pp. 3813–3833.

    PubMed  Article  CAS  Google Scholar 

  11. Musa, M.A. and Cooperwood, J.S., Curr. Med. Chem., 2008, vol. 15, pp. 2664–2679

    PubMed  Article  CAS  Google Scholar 

  12. Peter, N., Philipp, L., and Andreas, B.J., Med. Chem., 2002, vol. 45, pp. 4310–4320

    Article  Google Scholar 

  13. Gaelle, L.B., Christine, R., Jean, F.P., Jean, D.B., Mouad, A., Veronique, M., Barbara, S., and Jack, M.R., J. Med. Chem., 2007, vol. 50, pp. 6189–6200.

    Article  Google Scholar 

  14. Brady, H., Desai, S., Gayo-Fung, L.M., Khammungkhune, S., McKie, J.A., O’Leary, E., Pascasio, L., Sutherland, M.K., Anderson, D.W., Bhagwat, S.S., and Stein B., Cancer Res., 2002, vol. 62, pp. 1439–1442.

    PubMed  CAS  Google Scholar 

  15. Burlison, J.A., Neckers, L., Smith, A.B., Maxwell, A., and Blagg, B.S.J., J. Am. Chem. Soc., 2006, vol. 8, pp. 15529–15536.

    Article  Google Scholar 

  16. Murakani, A., Nakamura, Y., Torikai, K., and Tanaka, T., Cancer, 2000, vol. 60, pp. 5059–5066.

    Google Scholar 

  17. Steinfuhrer, T., Hantschmann, A., Pietsch, M., and Weibenfels, M., Liebigs Am. Chem., 1992, pp. 23–28.

    Google Scholar 

  18. Gruner, M., Rehwald, M., Eckert, K., and Gewald K., Heterocycles, 2000, vol. 53, pp. 2363–2377.

    Article  CAS  Google Scholar 

  19. Mahfouz, N.M. and Moharram, A.M., Pharm. Pharmacol. Commun., 1999, vol. 5, pp. 315–322.

    Article  CAS  Google Scholar 

  20. Moubasher, A.H., El-Naghy, M.A., Maghazy S.M., and El-Gendyz., The Korean. J., 1993, vol. 21, pp. 77–84.

    Google Scholar 

  21. Al-Doory, Y., Laboratory Medical Mycology, Philadelphia: Lea and Febiger, 1980, vol. 20, Chap. 19, pp. 219–241.

    Google Scholar 

  22. Bauer, A.W., Kibry, W.M.M., Sherris, J.C., and Truck, M., Am. J. Clin. Pathol., 1966, vol.45, pp. 493–496.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remon M. Zaki.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Dean, A.M.K., Zaki, R.M., Geies, A.A. et al. Synthesis and antimicrobial activity of new heterocyclic compounds containing thieno[3,2-c]coumarin and pyrazolo[4,3-c]coumarin frameworks. Russ J Bioorg Chem 39, 553–564 (2013). https://doi.org/10.1134/S1068162013040079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013040079

Keywords

  • thienocoumarine
  • pyrazolocoumarine
  • pyrimidothienocoumarine
  • imidazo thienocoumarine
  • synthesis
  • anti-microbial activity