Skip to main content
Log in

Design of TiO2~DNA nanocomposites for penetration into cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Methods of noncovalent immobilization of DNA fragments on titanium dioxide nanoparticles (TiO2) were developed to design TiO2∼DNA nanocomposites, which were capable of penetrating through cell membranes. TiO2 nanoparticles of different forms (amorphous, anatase, brookite) with enhanced agglomeration stability were synthesized. The particles were characterized by X-ray diffraction, small-angle X-ray scattering, infrared spectroscopy and atomic force microscopy. Three approaches to the preparation of nanocomposites are described: 1) sorption of polylysine-containing oligonucleotides onto TiO2 nanoparticles, 2) the electrostatic binding of oligonucleotides to TiO2 nanoparticles bearing immobilized polylysine, and 3) sorption of oligonucleotides on TiO2 nanoparticles in the presence of cetyltrimethylammonium bromide (cetavlon). All three methods provide an efficient and stable immobilization of DNA fragments on nanoparticles that leads to nanocomposites with a capacity of up to 40 nmol/mg for an oligonucleotide. DNA fragments in nanocomposites were shown to retain their ability to form complementary complexes. It was demonstrated by confocal laser microscopy that the proposed nanocomposites penetrated into cells without transfection agents and other methods of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Amf, Anz, and Brt:

titanium dioxide nanoparticles in amorphous and crystal (anataze and brookite) forms, respectively

PA:

polyamine

PL:

poly-L-lysine

PEI:

polyethyleneimine

Sp:

spermine

Sd:

spermidine

XRD:

X-ray diffraction

IR:

infrared spectroscopy

SAXS:

small-anlge X-ray scattering

AFM:

atomic-force microscopy

GE:

glycidyl isopropyl ether

p:

phosphate groups of oligonucleotide

ctab:

cetyltrimethylammonium bromide (cetavlon)

1× PBS:

buffer containing 0.14 M NaCl and 0.01 M K-phosphate

pH 7.4:

Flu, fluorescein residue

prefix:

“d” in designation of oligodeoxynucleotides is omitted

References

  1. Juliano, R., Alam, M.R., Dixit, V., and Kang, H., Nucleic Acids Res., 2008, vol. 36, pp. 4158–4171.

    Article  PubMed  CAS  Google Scholar 

  2. Midoux, P., Pichon, C., Yaouanc, J.-J., and Jaffres, P.A., Br. J. Pharmacol., 2009, vol. 157, pp. 166–178.

    Article  PubMed  CAS  Google Scholar 

  3. Kuznetsova, S.A. and Oretskaya, T.S., Ross. Nanotekhnol., 2010, vol. 5, pp. 40–52.

    Google Scholar 

  4. Cho, K., Wang, X., Nie, S., Chen, Z.G., and Shin, D.M., Clin. Cancer Res., 2008, vol. 14, pp. 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki, H., Toyooka, T., and Ibuki, Y., Environ. Sci. Technol., 2007, vol. 41, pp. 3018–3024.

    Article  PubMed  CAS  Google Scholar 

  6. Zarytova, V.F., Zinov’ev, V.V., Ismagilov, Z.R., Levina, A.S., Repkova, M.N., Shikina, N.V., Evdokimov, A.A., Belanov, E.F., Balakhnin, S.M., Serova, O.A., Baiborodin, S.I., Malygin, E.G., and Zagrebel’nyi, S.N., Ross. Nanotekhnol., 2009, vol. 4, pp. 115–118.

    Google Scholar 

  7. Suketa, N., Sawase, T., Kitaura, H., Naito, M., Baba, K., Nakayama, K., Wennerberg, A., and Atsuta, M., Clin. Implant Dent. Relat. Res., 2005, vol. 7, pp. 105–111.

    Article  PubMed  Google Scholar 

  8. Zhang, A.P. and Sun, Y.P., World J. Gastroenterol., 2004, vol. 10, pp. 3191–3193.

    PubMed  CAS  Google Scholar 

  9. Carbone, R., Giorgetti, L., Zanardi, A., Marangi, I., Chierici, E., Bongiorno, G., Fiorentini, F., Faretta, M., Piseri, P., Pelicci, P.G., and Milani, P., Biomaterials, 2007, vol. 28, pp. 2244–2253.

    Article  PubMed  CAS  Google Scholar 

  10. Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., and Thompson, M., Nat. Mater., 2009, vol. 8, pp. 543–557.

    Article  PubMed  CAS  Google Scholar 

  11. Dick, C.A., Brown, D.M., Donaldson, K., and Stone, V., Inhal. Toxicol., 2003, vol. 15, pp. 39–52.

    Article  PubMed  CAS  Google Scholar 

  12. Beutner, R., Michael, J., Förster, A., Schwenzer, B., and Scharnweber, D., Biomaterials, 2009, vol. 30, pp. 2774–2781.

    Article  PubMed  CAS  Google Scholar 

  13. Tachikawa, T., Asanoi, Y., Kawai, K., Tojo, S., Sugimoto, A., Fujitsuka, M., and Majima, T., Chemistry, 2008, vol. 14, pp. 1492–1498.

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka, T., Hatakeyama, K., Sawaguchi, M., Iwadate, A., Mizutani, Y., Sasaki, K., Tateishi, N., Takeyama, H., and Matsunaga, T., Biotechnol. Bioeng., 2006, vol. 95, pp. 22–28.

    Article  PubMed  CAS  Google Scholar 

  15. Paunesku, T., Rajh, N., Wiederrecht, G., Maser, J., Vogt, S., Stojic-evic, N., Protic-, M., Lai, B., Oryhon, J., Thurnauer, M., and Woloschak, G., Nat. Mater., 2003, vol. 2, pp. 343–346.

    Article  PubMed  CAS  Google Scholar 

  16. Paunesku, T., Vogt, S., Lai, B., Maser, J., Stojićević, N., Thurn, R.T., Osipo, C., Liu, H., Legnini, D., Wang, Z., Lee, C., and Woloschak, G.E., Nano Lett., 2007, vol. 7, pp. 596–601.

    Article  PubMed  CAS  Google Scholar 

  17. Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B.M., Lu, J., Wanzer, M.B., Woloschak, G.E., and Smalle, J.A., Nano Lett., 2010, vol. 10, pp. 2296–2302.

    Article  PubMed  CAS  Google Scholar 

  18. Levina, A., Ismagilov, Z., Repkova, M., Shatskaya, N., Shikina, N., Tusikov, F., and Zarytova, V., Nanosci. Nanotech., 2011, vol. 11, pp. 1–9.

    Article  Google Scholar 

  19. Ismagilov, Z.R., Shikina, N.V., Mazurkova, N.A., Tsikoza, L.T., Tuzikov, F.V., Ushakov, V.A., Ishchenko, A.V., Rudina, N.A., Korneev, D.V., and Ryabchikova, E.I., Sci. World J., 2012 (in press).

  20. Levina, A.S., Mikhaleva, E.A., Repkova, M.N., and Zarytova, V.F., Russ. J. Bioorg. Chem., 2008, vol. 34, pp. 89–95.

    Article  CAS  Google Scholar 

  21. Levina, A., Pyshnaya, I., Repkova, M., Rar, V., and Zarytova, V., Biotechnol. J., 2007, vol. 2, pp. 879–885.

    Article  PubMed  CAS  Google Scholar 

  22. Bashchuk, O.S., Zarytova, V.F., and Levina, A.S., Bioorgan. Khimiya, 1988, vol. 14, pp. 606–614.

    Google Scholar 

  23. Doss, C.J. and Zallen, R., Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, pp. 15626–15637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Zarytova.

Additional information

Original Russian Text © A.S. Levina, Z.R. Ismagilov, M.N. Repkova, N. V. Shikina, S.I. Baiborodin, N.V. Shatskaya, S.N. Zagrebelnyi, V.F. Zarytova, 2013, published in Bioorganicheskaya Khimiya, 2013, Vol. 39, No. 1, pp. 87–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levina, A.S., Ismagilov, Z.R., Repkova, M.N. et al. Design of TiO2~DNA nanocomposites for penetration into cells. Russ J Bioorg Chem 39, 77–86 (2013). https://doi.org/10.1134/S1068162013010068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013010068

Keywords

Navigation