Skip to main content
Log in

Theoretical possibilities and limitations of protease primary specificity determination by statistical analysis of MALDI mass-spectra of proteolysis products

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Possibilities and limitations of the method of examination of proteolytic enzymes’ primary specificity by statistical analysis of MALDI (matrix-assisted laser desorption/ionization) mass spectra of products obtained by protein substrate proteolysis, without direct determination of their amino acid sequences, were investigated theoretically. The optimum range given by the measurement errors of the peptides’ masses for obtaining a statistical set of the events, and the form of statistical data presentation, were chosen. It was shown that the proposed method can be applied only for proteases with a relatively narrow primary specificity (two or three amino acids). The influence of protein substrate molecular weight and amino acid composition on the efficiency of specifics for a particular protease amino acid, revealed under statistical treatment of the set of proteolysis product masses, was studied on the model of trypsin, chymotrypsin, glutamylendopeptidase, pepsin (pH 1.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schechter, J. and Berger, A., Biochem. Biophis. Res. Communs., 1967, vol. 27, pp. 157–162.

    Article  CAS  Google Scholar 

  2. Klesov, A.A., Fermentativnyi kataliz (Enzymatic Catalysis), Moscow: Izd. Mosk. Gos. Univ., 1984, vol. 2.

    Google Scholar 

  3. Collins, P.J., McMahon, G., O’Brien, P., and O’Connor, B., Int. J. Biochem. Cell Biol., 2004, vol. 36 P, pp. 2320–2333.

    Article  Google Scholar 

  4. Guionie, O., Moallic, C., Niamker, S., Placier, G., Sine, J.-P., and Colas, B., Comp. Biochem. Physiol., 2003, vol. 135, pp. 503–510.

    Article  Google Scholar 

  5. Baskova, I.R. and Zavalova, L.L., Biochemistry (Moscow), 2007, vol. 72, no. 2, pp. 270–278.

    Article  Google Scholar 

  6. Celia, P. and Milstein, D.E.V., Deverson, Biochem. J., 1971, vol. 123, pp. 945–958.

    Google Scholar 

  7. Nolan, C., Margoliash, E., Peterson, J.D., and Steiner, D.F., J. Biol. Chem., 1971, vol. 246, pp. 2780–2791.

    PubMed  CAS  Google Scholar 

  8. Shilling, O. and Overall, C.M., Nature Biotechnol., 2008, vol. 26, pp. 585–594.

    Article  Google Scholar 

  9. Keller, U., Auf Dem, Schilling O, Biochimie, 2010, vol. 92, pp. 1705–1714.

    Article  Google Scholar 

  10. Keller, U., Auf Dem, Schilling O, Overall C. M, Methods Mol. Biol., 2011, vol. 753, pp. 257–272.

    Article  Google Scholar 

  11. Zinchenko, A.A., Rumsh, L.D., and Antonov, V.K., Bioorg. Khim., 1976, vol. 2, pp. 803–810.

    CAS  Google Scholar 

  12. Roepstorff, P., Proteomics in Functional Genomics: Protein Structure Analysis, Jolles, P. and Jornvall, H., Eds., Basel: Birkhauser Verlag AC, 2000.

    Google Scholar 

  13. Bernd, O. and Keller, LiangLi., J. Am. Soc. Mass Spectrom., 2000, vol. 11, pp. 88–93.

    Article  Google Scholar 

  14. Sungurov, Yu.V., Eremeev, N.L., Lebedev, A.T., Maloshitskaya, O.A., Rudenskaya, G.N., and Semenova, S.A., Russ. J. Bioorg. Chem., 2008, vol. 34, pp. 353–358.

    Article  CAS  Google Scholar 

  15. Sungurov, Yu.V., Eremeev, N.L., Lebedev, A.T., Maloshitskaya, O.A., Rudenskaya, G.N., and Semenova, S.A., Mass-Spektrometriya, 2008, vol. 5, no. 4, pp. 259–266.

    CAS  Google Scholar 

  16. Sungurov, Yu.V., Eremeev, N.L., Lebedev, A.T., Maloshitskaya, O.A., Rudenskaya, G.N., Semenova, S.A., and Shmoylov, A.M., in Research Progress in Biotechnology, Zaikov, G.E., Ed., New York: Nova Science Publ., 2008.

    Google Scholar 

  17. http://expasy.org/tools/findpept.html.

  18. Gay, S., Binz, P.A., Hochstrasser, D.F., and Appel, R.D., Electrophores, 1999, vol. 20, no. 18, pp. 3527–3534.

    Article  CAS  Google Scholar 

  19. Tabb, D.L., MacCoss, M.J., Wu, C.C., Anderson, S.D., and Yates, J.R., Anal. Chem., 2003, vol. 75, no. 10, pp. 2470–2477.

    Article  PubMed  CAS  Google Scholar 

  20. Wolski, W.E., Farrow, M., Emde, A., Lehrach, H., Lalowski, M., and Reinert, K., Proteome Sci., 2006, vol. 4, p. 18.

    Article  PubMed  Google Scholar 

  21. http://www.uniprot.org/.

  22. http://expasy.org/tools/peptide-mass.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Eremeev.

Additional information

Original Russian Text © M.I. Drachevskaya, A.V. Borzenkova, N.L. Eremeev, 2012, published in Bioorganicheskaya Khimiya, 2012, Vol. 38, No. 1, pp. 111–118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drachevskaya, M.I., Borzenkova, A.V. & Eremeev, N.L. Theoretical possibilities and limitations of protease primary specificity determination by statistical analysis of MALDI mass-spectra of proteolysis products. Russ J Bioorg Chem 38, 93–99 (2012). https://doi.org/10.1134/S1068162012010049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162012010049

Keywords

Navigation