Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite

  • I. I. Vlasova
  • A. V. Sokolov
  • A. V. Chekanov
  • V. A. Kostevich
  • V. B. Vasilyev
Article

Abstract

Broadening prospects of using single-walled carbon nanotubes (SWNTs) in medicine and biotechnology raise the concerns about both their toxicity and the mechanisms of biodegradation and elimination from the body. SWNTs biodegradation as a result of catalytic activity of myeloperoxidase (MPO) was shown in the isolated MPO system as well as in the suspension of neutrophils [Kagan V.E. et al., 2010]. In the present study we analyzed the ability of different MPO-produced oxidants to oxidize and to degrade SWNTs. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that myeloperoxidase, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in the degrading of carbon nanotubes. The biodegradation of SWNTs in the model system can also be induced by free radicals generated as a result of heme degradation and, to a lesser extent, by active oxoferryl intermediates of peroxidases. Our experiments showed that in the presence of blood plasma, peroxidase intermediates or free radical products of heme degradation were unable to initiate biodegradation of carbon nanotubes, only the generation of hypochlorite by MPO can cause the biodegradation of carbon nanotubes in vivo. At high concentrations, hypochlorite caused decrease in optical absorbance of plasma-containing SWNTs suspension, which is indicative of the nanotube degradation. Our results unambiguously suggest that hypochlorite can serve as a main oxidizing agent to modify and degrade nanotubes at the sites of inflammation and in phagosomes.

Keywords

myeloperoxidase hypochlorite single-walled carbon nanotubes peroxidase activity biodegradation 

Abbreviations

SWNTs

single-walled carbon nanotubes

NTs

nanotubes

MPO

myeloperoxidase

LPO

lactoperoxidase

HRP

horseradish peroxidase

ABTS

2,2′-azinobis(3-ethylbenzotriazolin-6-sulfonate

DTPA

diethylenetriaminepentaacetic acid

Hb

hemoglobin

References

  1. 1.
    Foldvari, M. and Bagonluri, M., Nanomedicine, 2008, vol. 4, pp. 183–200.PubMedGoogle Scholar
  2. 2.
    Lacerda, L., Bianco, A., Prato, M., and Kostarelos, K., Adv. Drug Deliv. Rev., 2006, vol. 58, pp. 1460–1470.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen, J., Chen, S., Zhao, X., Kuznetsova, L.V., Wong, S.S., and Ojima, I., J. Am. Chem. Soc., 2008, vol. 130, pp. 16778–16785.PubMedCrossRefGoogle Scholar
  4. 4.
    Prato, M., Kostarelos, K., and Bianko, A., Acc. Chem. Res., 2007, vol. 41, pp. 60–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Shvedova, A.A., Kagan, V.E., and Fadeel, B., Annu. Rev. Pharmacol. Toxicol., 2009, vol. 50, pp. 63–88.CrossRefGoogle Scholar
  6. 6.
    Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J.P., Muller, S., Prato, M., and Bianco, A., Nat. Nanotechnol., 2007, vol. 2, no. 2, pp. 108–113.PubMedCrossRefGoogle Scholar
  7. 7.
    Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., and Dai, H., Cancer Res., 2008, vol. 68, pp. 6652–6660.PubMedCrossRefGoogle Scholar
  8. 8.
    Kam, N.W.S., O’Connell, M., Wisdom, J.A., and Dai, H., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 33, pp. 11600–11605.PubMedCrossRefGoogle Scholar
  9. 9.
    Schipper, M.L., Nakayama-Ratchford, N., Davis, C.R., Kam, N.W., Chu, P., Liu, Z., Sun, X., Dai, H., and Gambhir, S.S., Nat. Nanotechnol., 2008, vol. 3, pp. 218–221.CrossRefGoogle Scholar
  10. 10.
    Yang, S.-T., Wang, X., Jia, G., Cu, Yi., Wang, T., Nie, H., Ge, C., Wang, H., and Liu, Yu., Toxic. Lett., 2008, vol. 181, pp. 182–189.CrossRefGoogle Scholar
  11. 11.
    Wei, Z., Kondratenko, M., Dao, L.H., and Perepichka, D.F., J. Am. Chem. Soc., 2006, vol. 128, pp. 3134–3135.PubMedCrossRefGoogle Scholar
  12. 12.
    Konduru, N.V., Tyurina, Y.Y., Feng, W., Basova, L.V., Belikova, N.A., Bayir, H., Clark, K., Rubin, M., Stolz, D., Vallhov, H., Scheynius, A., Witasp, E., Fadeel, B., Kichambare, P.D., Star, A., Kisin, E.R., Murray, A.R., Shvedova, A.A., and Kagan, V.E., PLoS One, 2009, vol. 4, no. 2, p. 4398.CrossRefGoogle Scholar
  13. 13.
    Wu, S.H., Thin Solid Films, 2007, vol. 311, no. 2, pp. 338–346.Google Scholar
  14. 14.
    Allen, B.L., Kichambare, P.D., Gou, P., Vlasova, I.I., Kapralov, A.A., Konduru, N.V., Kagan, V.E., and Star, A., Nano Lett., 2008, vol. 8, no. 11, pp. 3899–3903.PubMedCrossRefGoogle Scholar
  15. 15.
    Allen, B.L., Kotchey, G.P., Chen, Y., Yanamala, N.V., Klein-Seetharaman, J., Kagan, V.E., and Star, A., J. Am. Chem. Soc., 2009, vol. 131, no. 47, pp. 17194–17205.PubMedCrossRefGoogle Scholar
  16. 16.
    Davies, M.J., Hawkins, C.L., Pattison, D.I., and Rees, M.D., Antioxid. Redox Signal, 2008, vol. 10, no. 7, pp. 1199–1234.PubMedCrossRefGoogle Scholar
  17. 17.
    Klebanoff, S.J., J. Leukocyte Biol., 2005, vol. 77, pp. 598–625.PubMedCrossRefGoogle Scholar
  18. 18.
    Kagan, V.E., Konduru, N.V., Feng, W., Allen, B.L., Conroy, J., Volkov, Y., Vlasova, I.I., Belikova, N.A., Yanamala, N., Kapralov, A., Tyurina, Y.Y., Shi, J., Kisin, E.R., Murray, A.R., Franks, J., Stolz, D., Gou, P., Klein-Seetharaman, J., Fadeel, B., Star, A., and Shvedova, A.A., Nat. Nanotechnol., 2010, vol. 5, no. 5, pp. 354–359.PubMedCrossRefGoogle Scholar
  19. 19.
    Fagan, J.A., Simpson, J.R., Bauer, B.J., Lacerda, S.H., Becker, M.L., Chun, J., Migler, K.B., Walker, A.R., and Hobbie, E.K., J. Am. Chem. Soc., 2007, vol. 128, pp. 10607–10612.CrossRefGoogle Scholar
  20. 20.
    Kettle, A.J. and Winterbourn, C.C., Methods Enzymol., 1994, vol. 233, pp. 502–512.PubMedCrossRefGoogle Scholar
  21. 21.
    Svistunenko, D.A., Biochim. Biophys. Acta, 2001, vol. 1546, pp. 365–378.PubMedCrossRefGoogle Scholar
  22. 22.
    Puppo, A. and Halliwell, B., Biochem. J., 1988, vol. 249, pp. 185–190.PubMedGoogle Scholar
  23. 23.
    Yakutova, E.Sh., Osipov, A.N., Kostenko, O.V., Arnkhol’d, I., Arnol’d, K., and Vladimirov, Yu.A., Biofizika, 1992, vol. 37, no. 6, pp. 1021–1028.Google Scholar
  24. 24.
    Hernández-Ruiz, J., Arnao, M.B., Hiner, A.N., García-Cánovas, F., and Acosta, M., Biochem. J., 2001, vol. 354, pp. 107–114.PubMedCrossRefGoogle Scholar
  25. 25.
    Pattison, D.I., Hawkins, C.L., and Davies, M.J., Biochemistry, 2007, vol. 46, pp. 9853–9864.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirchner, T., Flemmig, J., Furtmuller, P.G., Obinger, C., and Arnhold, J., Arch. Biochem. Biophys., 2010, vol. 495, pp. 21–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Vlasova, I.I., Chekanov, A.V., Matskevich, V.A., and Sokolov, A.V., in Sb. tezisov dokl. uchastnikov Vtorogo Mezhdunarodnogo foruma po nanotekhnologiyam, 6–8 oktyabrya, 2009 (Abstracts of Papers of Participants of the Second Int. Forum on Nanotechnology, October 6–8, 2009), Moscow, pp. 603–605. http://rusnanotech09.rusnanoforum.ru/Public/Large-Docs/theses/eng/poster/15/08-Vlasova.pdf.
  28. 28.
    Furtmuller, P.G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C., and Obinger, C., Arch. Biochem. Biophys., 2006, vol. 445, no. (2), pp. 199–213.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, R. and Pignatello, J.J., Environ. Sci. Technol., 1997, vol. 31, pp. 1862–1867.Google Scholar
  30. 30.
    Vladimirov, Yu.A., Azizova, O.A., Deev, A.I., Kozlov, A.V., Osipov, A.N., and Roshchupkin, D.I., in Svobodnye radikaly v zhivykh sistemakh. Itogi nauki i tekhniki. Biofizika (Free Radicals in Living Systems. Advances in Science and Technology, Ser. Biophysics), Moscow, 1991, vol. 29.Google Scholar
  31. 31.
    Panasenko, O.M., Arnkhol’d, Yu., and Sergienko, V.I., Biol. Membr., 2002, vol. 19, pp. 403–434.Google Scholar
  32. 32.
    Vlasova, I.I., Arnkhol’d, Yu., Osipov, A.N., and Panasenko, O.M., Biokhimiya, 2006, vol. 71, pp. 825–837.Google Scholar
  33. 33.
    Pfeiffer, S., Schmidt, K., and Mayer, B., J. Biol. Chem., 2000, vol. 275, pp. 6346–6352.PubMedCrossRefGoogle Scholar
  34. 34.
    Bakkenist, A.R.J., De Boer, J.E.G., Plat, H., and Wever, R., Biochim. Biophys. Acta, 1980, vol. 613, pp. 337–348.PubMedGoogle Scholar
  35. 35.
    Sokolov, A.V., Pulina, M.O., Ageeva, K.V., Airapetov, M.I., Volgin, G.N., Berlov, M.N., Markov, A.G., Yablonskii, P.K., Kolodkin, N.I., Zakharova, E.T., and Vasil’ev, V.B., Biokhimiya, 2007, vol. 72, pp. 506–514.Google Scholar
  36. 36.
    Ramos, C.L., Pou, S., Britigan, B.E., Cohen, M.S., and Rosen, G.M., J. Biol. Chem., 1992, vol. 267, no. 12, pp. 8307–8312.PubMedGoogle Scholar
  37. 37.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–686.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. I. Vlasova
    • 1
  • A. V. Sokolov
    • 1
    • 2
  • A. V. Chekanov
    • 1
  • V. A. Kostevich
    • 1
    • 2
  • V. B. Vasilyev
    • 2
  1. 1.Research Institute of Physical Chemical MedicineMoscowRussia
  2. 2.Institute of Experimental Medicine RAMSSt. PetersburgRussia

Personalised recommendations