Skip to main content
Log in

Immobilization of glutathione by complementary coordination binding

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A simple method was proposed for the immobilization of biologically important molecules consisting of many functional fragments, by means of the selective binding of their thiol groups to the surface carboxyl groups with participation of cadmium ions. Biofunctional properties of these structures were studied by the surface plasmon resonance method, with the example of glutathione (GSH), which was immobilized onto mixing thiol monolayers containing terminal groups of the carboxyl (a) and methyl/hydroxyl (b) types (a: b, from 1: 100 to 1: 700). The maintenance of the biofunctional conformation of glutathione-S-transferase (GST) after its interaction with GSH was monitored using specific anti-GST antibodies. The CH3 matrix was shown to be capable of considerable nonspecific binding and not suitable to form the biofunctional GST layer. At the same time, the OH-based structures demonstrated the specific GST-anti-GST interaction, with stoichiometry corresponding to the bidentate binding. The above simple method of the immobilization can be used to create functional surface architectures in analytical biochemistry and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

anti-GST:

antibodies to GST

BB:

Borate buffer

GB:

glycine buffer

GSH:

glutathione

GST:

Glutathione-S-transferase

SPR:

surface plasmon resonance

PBS:

phosphate buffer

References

  1. Ghosh, S.K. and Pal, T., Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 3831–3844.

    Article  PubMed  CAS  Google Scholar 

  2. Snopok, B.A., Boltovets, P.N., and Rowell, F.J., Theor. Exp. Chem., 2008, vol. 44, pp. 165–171.

    Article  CAS  Google Scholar 

  3. Ferreirós-Martínez, R., Esteban-Gómez, D., Platas-Iglesias, C., de Blas, A., and Rodríguez-Blas, T., Dalton Trans., 2008, vol. 48, pp. 5754–5765.

    Article  Google Scholar 

  4. Melman, G., Vimal, P., and Melman, A., Inorg. Chem., 2009, vol. 48, pp. 8662–8664.

    Article  PubMed  CAS  Google Scholar 

  5. Snopok, B.A., Boltovets, P.M., and Rowell, F.J., Theor. Exp. Chem., 2006, vol. 42, pp. 217–223.

    Article  CAS  Google Scholar 

  6. Homola, J., Anal. Bioanal. Chem., 2003, vol. 377, pp. 528–539.

    Article  PubMed  CAS  Google Scholar 

  7. Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A., Nesterenko, P.N., Mingalev, P.G., and Furman, D.B., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Graft Surface Compounds), Moscow: Fizmatlit, 2003.

    Google Scholar 

  8. Frova, C., Biomol. Eng., 2006, vol. 23, pp. 149–169.

    Article  PubMed  CAS  Google Scholar 

  9. Meister, A. and Anderson, M.E., Ann. Rev. Biochem., 1983, vol. 52, pp. 711–760.

    Article  PubMed  CAS  Google Scholar 

  10. Mendoza-Cózatl, D., Loza-Tavera, H., Hernández-Navarro, A., and Moreno-Sánchez, R., FEMS Microbiol. Rev., 2005, vol. 29, pp. 653–671.

    Article  PubMed  Google Scholar 

  11. Rausch, T., Gromes, R., Liedschulte, V., Müller, I., Bogs, J., Galovic, V., and Wachter, A., Plant Biol., 2007, vol. 9, pp. 565–572.

    Article  PubMed  CAS  Google Scholar 

  12. Fraternale, A., Paoletti, M.F., Casabianca, A., Nencioni, L., Garaci, E., Palamara, A.T., and Magnani, M., Mol. Aspects Med., 2009, vol. 30, pp. 99–110.

    Article  PubMed  CAS  Google Scholar 

  13. Krezel, A. and Bal, W., Acta Biochem. Polon., 1999, vol. 46, pp. 567–680.

    CAS  Google Scholar 

  14. Fujiwara, S., Formicka-Kozlowska, G., and Kozlowski, H., Bull. Chem. Soc. Jpn., 1977, vol. 50, pp. 3131–3135.

    Article  CAS  Google Scholar 

  15. Vugeli-Lange, R. and Wagner, G.J., Plant Sci., 1996, vol. 114, pp. 11–18.

    Article  Google Scholar 

  16. Corrie, A.M., Wakler, M.D., and Williams, D.R., J. Chem. Soc., Dalton Trans., 1976, pp. 1012–1015.

  17. Li, Z.S., Lu, Y.P., Zhen, R.G., Szchypka, M., Thiele, D.J., and Rea, P.A., Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 42–47.

    Article  PubMed  CAS  Google Scholar 

  18. Kadima, W. and Rabenstein, D.L., J. Inorg. Biochem., 1990, vol. 38, pp. 277–288.

    Article  PubMed  CAS  Google Scholar 

  19. Fuhr, J. and Rabenstein, D.L., J. Am. Chem. Soc., 1973, vol. 5, pp. 6944–6950.

    Article  Google Scholar 

  20. Chow, E., Hilbert, D.B., and Gooding, J.J., Analyst, 2005, vol. 130, pp. 831–837.

    Article  PubMed  CAS  Google Scholar 

  21. Leverrier, P., Montigny, C., Garrigosa, M., and Champeil, P., Anal. Biochem., 2007, vol. 371, pp. 215–228.

    Article  PubMed  CAS  Google Scholar 

  22. Sheehan, D., Meade, G., Foley, V.M., and Dowd, C.A., Biochem. J., 2001, vol. 360, pp. 1–16.

    Article  PubMed  CAS  Google Scholar 

  23. Dirr, H., Reinemer, P., and Huber, R., J. Mol. Biol., 1994, vol. 243, pp. 72–92.

    Article  PubMed  CAS  Google Scholar 

  24. Erhardt, J. and Dirr, H., FEBS Lett., 1996, vol. 391, pp. 313–316.

    Article  PubMed  CAS  Google Scholar 

  25. Silin’sh, E.A., Elektronnye sostoyaniya organicheskikh molekulyarnykh kristallov (Electronic State of Organic Molecular Crystalls), Riga: Zinatne, 1978.

    Google Scholar 

  26. Párraga, A., García-Sáez, I., Walsh, S.B., Mantle, T.J., and Coll, M., Biochem. J., 1998, vol. 333, pp. 811–816.

    PubMed  Google Scholar 

  27. Adang, A.E., Moree, W.J., Brussee, J., Mulder, G.J., and van der Gen, A., Biochem. J., 1991, vol. 278, pp. 63–68.

    PubMed  CAS  Google Scholar 

  28. Praig, V. and Hall, E.A., Anal. Chem. Acta, 2003, vol. 500, pp. 323–336.

    Article  CAS  Google Scholar 

  29. Glatz, Z., Psotova, J., Janiczek, O., Chroust, K., and Jowet, T., J. Chromatogr., B, 1997, vol. 688, pp. 239–243.

    Article  CAS  Google Scholar 

  30. Sehr, P., Zumbach, K., and Pawlita, M., J. Immunol. Methods, 2001, vol. 253, pp. 153–162.

    Article  PubMed  CAS  Google Scholar 

  31. Jung, J.-W., Jung, S.-H., Kim, H.-S., Yuk, J.-S., Park, J.-B., Kim, Y.-M., Han, J.-A., Kim, P.-H., and Ha, K.-S., Proteomics, 2006, vol. 6, pp. 1110–1120.

    Article  PubMed  CAS  Google Scholar 

  32. Matsubara, K., Kavata, S., and Minami, S., Appl. Opt., 1988, vol. 27, pp. 1160–1163.

    Article  PubMed  CAS  Google Scholar 

  33. Liedberg, B., Nylander, C., and Lundstrem, I., Biosens. Bioelectron., 1995, vol. 10, pp. 137–144.

    Article  Google Scholar 

  34. Andersson, K., Hämäläinen, M., and Malmqvist, M., Anal. Chem., 1999, vol. 71, pp. 2475–2481.

    Article  PubMed  CAS  Google Scholar 

  35. Kravchenko, S.A., Kruglenko, I.V., and Snopok, B.A., Theor. Exp. Chem., 2009, vol. 45, pp. 108–113.

    Article  CAS  Google Scholar 

  36. Vol’kenshtein, F.F., Elektronnye protsessy na poverkhnosti poluprovodnikov pri khemosorbtsii (Electronic Processes on the Surface of Semiconductors during Chemosorption), Moscow: Nauka, 1979.

    Google Scholar 

  37. Stöcklein, W.F.M., Behrsing, O., Scharte, G., Micheel, B., Benkert, A., Schößler, W., Warsinke, A., and Schellera, F.W., Biosen. Bioelectron., 2000, vol. 15, pp. 377–382.

    Article  Google Scholar 

  38. Nayeri, F., Nayeri, T., Aili, D., Brudin, L., and Liedberg, B., Growth Factors, 2008, vol. 26, pp. 163–171.

    Article  PubMed  CAS  Google Scholar 

  39. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, Oxford: Clarendon, 1986.

    Google Scholar 

  40. Snopok, B., Yurchenko, M., Szekely, L., Klein, G., and Kasuba, E., Anal. Bioanal. Chem., 2006, vol. 386, pp. 2063–2073.

    Article  PubMed  CAS  Google Scholar 

  41. Savchenko, A., Kashuba, E., Kashuba, V., and Snopok, B., Anal. Chem., 2007, vol. 79, pp. 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  42. Boltovets, P.M. and Snopok, B.A., Talanta, 2009, vol. 80, pp. 466–472.

    Article  PubMed  CAS  Google Scholar 

  43. Beketov, G.V., Shirshov, Yu.M., Shynkarenko, O.V., and Chegel, V.I., Sen. Actuators, B, 1998, vol. 48, pp. 432–438.

    Article  Google Scholar 

  44. Boltovets, P.M., Savchenko, A.A., and Snopok, B.A., Proc. SPIE-Int. Soc. Opt. Eng., 2007, vol. 6585, pp. 65851S1–65851S8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Snopok.

Additional information

Original Russian Text © P.N. Boltovets, A.A. Savchenko, A.P. Filippov, B.A. Snopok, 2011, published in Bioorganicheskaya Khimiya, 2011, Vol. 37, No. 5, pp. 616–626.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boltovets, P.N., Savchenko, A.A., Filippov, A.P. et al. Immobilization of glutathione by complementary coordination binding. Russ J Bioorg Chem 37, 550–559 (2011). https://doi.org/10.1134/S1068162011040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162011040030

Keywords

Navigation