Skip to main content

Advertisement

Log in

Fluorescent semiconductor nanocrystals (quantum dots) in protein biochips

  • Review Papers
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Understanding the biological processes in cells, tissues, and organisms requires the identification and analysis of multiple biological objects and the mechanisms of their functioning and regulation. The biological chip (biochip) technique is one of the most efficient tools for these tasks. Biochips are highly efficient and can quantitatively register multiple molecules simultaneously in samples of microscopic volume. Biochips allow the parallel genomic or proteomic analysis of normal or pathologically modified cells and tissues and a comparative analysis to elucidate disease-related changes. Fluorescent dyes used for signal readout from biochips have the following disadvantages: low photostability, low brightness, and the presence of a fluorescent background. It was recently shown that these limitations can be removed if fluorescent semiconductor nanocrystals (quantum dots) are used. Individual quantum dots in the form of colloid nanocrystals (QDs) are easily registered by conventional microscopic equipment due to their high brightness; they are extremely resistant to photobleaching and provide unique opportunities for multiplexing. QDs are ideal fluorophores for information readout from biochips and allow for the detection of single molecules.

The present work is aimed at developing approaches for the use of QDs in biochip-based detection systems. The possibilities of using QDs in both planar (or matrix) biochips and suspension (or liquid) biochips, which are undergoing intensive development, are demonstrated. The use of the latter in analytical systems for the simultaneous identification of multiple objects in proteomics, genomics, drug testing, and clinical diagnostics is currently increasing. These systems are based on spectrally coded elements (usually polymer microspheres). An advantage of liquid biochips over matrix planar solid biochips is the possibility of the free movement of microspheres in three-dimensional space. Organic fluorophores allow the realization of a limited number of codes, i.e., objects analyzed simultaneously (multiplexing), while semiconductor QDs make possible a significant increase in both biochip multiplexing and the photostability and sensitivity of the biochips. In addition, the use of FRET (Foerster resonance energy transfer) in liquid biochips makes possible an increase in the detection specificity. The absence of a background signal from the fluorescent labels not bound to the microparticles increases the sensitivity of the analysis and provides additional opportunities for multiplex analysis and diagnostics.

Thus, a combination of the biochip technique and semiconductor QDs makes it possible to increase the method’s sensitivity and the number of objects detected (the degree of multiplexing). This combination is likely to enable a significant breakthrough in proteomics, particularly in the development of new drugs, clinical diagnostics, identification of molecular markers, and elucidation of the intracellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

QDs:

colloid nanocrystal quantum dots

FRET:

Foerster resonance energy transfer

References

  1. Stoll, D., Templin, M.F., Schrenk, M., Traub, P.C., Vohringer, C.F., and Joos, T.O., Front Biosci., 2002, vol. 7, pp. 13–32.

    Article  Google Scholar 

  2. Stoll, D., Bachmann, J., Templin, M.F., and Joos, T.O., Targets, 2004, vol. 3, p. 24.

    CAS  Google Scholar 

  3. Chen, C.-S. and Zhu, H., BioTechniques, 2006, vol. 40, p. 423.

    Article  PubMed  CAS  Google Scholar 

  4. Chechetkin, V.R., Prokopenko, D.V., Makarov, A.A., and Zasedatelev, A.S., Ross. Nanotekhnol., 2006, vol. 1, pp. 13–27.

    Google Scholar 

  5. Gracey, A.Y. and Cossins, A.R., Annu. Rev. Physiol., 2003, vol. 65, pp. 231–259.

    Article  PubMed  CAS  Google Scholar 

  6. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A., Anal. Biochem., 2000, vol. 278, pp. 123–131.

    Article  PubMed  CAS  Google Scholar 

  7. Tao, S.C., Chen, C.S., and Zhu, H., Comb. Chem. High Throughput Screen, 2007, vol. 10, pp. 706–718.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, Y., Lee, E.K., Cho, Y.W., Matsui, T., Kang, I.C., Kim, T.S., and Han, M.H., Proteomics, 2003, vol. 3, pp. 2289–2304.

    Article  PubMed  CAS  Google Scholar 

  9. Sasakura, Y., Kanda, K., Yoshimura-Suzuki, T., Matsui, T., Fukuzono, S., and Shimizu, T., Biochemistry, 2005, vol. 44, pp. 9598–9605.

    Article  PubMed  CAS  Google Scholar 

  10. Zha, H., Raffeld, M., Charboneau, L., Pittaluga, S., Kwak, L.W., and Petricoin, E. 3rd, Liotta, L.A., and Jaffe, E.S., Lab. Invest., 2004, vol. 84, pp. 235–244.

    Article  PubMed  CAS  Google Scholar 

  11. Chan, S.M., Weng, A.P., Tibshirani, R., Aster, J.C., and Utz, P.J., Blood, 2007, vol. 110, pp. 278–286.

    Article  PubMed  CAS  Google Scholar 

  12. Li, B., Zhou, D., Wang, Z., Song, Z., Wang, H., Li, M., Dong, X., Wu, M., Guo, Z., and Yang, R., Microbes. Infect., 2008, vol. 10, pp. 45–51.

    Article  PubMed  CAS  Google Scholar 

  13. Xu, R., Gan, X., Fang, Y., Zheng, S., and Dong, Q., Anal. Biochem., 2007, vol. 362, pp. 69–75.

    Article  PubMed  CAS  Google Scholar 

  14. Mirzabekov, A.D., Vestn. Ross. Akad. Nauk, 2003, vol. 73, p. 412.

    CAS  Google Scholar 

  15. Zajac, A., Song, D., Qian, W., and Zhukov, T., Colloids Surf., 2007, vol. 58, pp. 309–314.

    Article  CAS  Google Scholar 

  16. Yuk, C.S., Lee, H.K., Kim, H.T., Choi, Y.K., Lee, B.C., Chun, B.H., and Chung, N., Biotechnol. Lett., 2004, vol. 26, pp. 1563–1568.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu, H., Hu, S., Jona, G., Zhu, X., Kreiswirth, N., Willey, B.M., Mazzulli, T., Liu, G., Song, Q., Chen, P., Cameron, M., Tyler, A., Wang, J., Wen, J., Chen, W., Compton, S., and Snyder, M., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 4011–4016.

    Article  PubMed  CAS  Google Scholar 

  18. Smith, A.M., Dave, S., Nie, S., True, L., and Gao, X., Expert. Rev. Mol. Diagn., 2006, vol. 6, pp. 231–244.

    Article  PubMed  CAS  Google Scholar 

  19. Kolchinskii, A.M., Barskii, V.E., and Zasedatelev, A.S., Mol. Biol., 2007, vol. 41, pp. 757–764.

    Google Scholar 

  20. Ryabykh, T.P., Osipova, T.V., Dement’eva, E.I., Rubina, A.Yu., Darii, E.I., Baryshnikov, A.Yu., Zasedatelev, A.S., and Mirzabekov, A.D., Ross. Bioterapevt. Zh., 2004, vol. 3, pp. 30–31.

    Google Scholar 

  21. Gryadunov, D.A., Zimenkov, D.V., Mikhailovich, V.M., Nasedkina, T.V., Dement’eva, E.I., Rubina, A.Yu., Pan’kov, S.V., Barskii, V.E., and Zasedatelev, A.S., Med. Alfavit. Lab., 2009, vol. 3, pp. 10–14.

    Google Scholar 

  22. Protein Microarray Technology, Kambhampati, D., Ed., Weinheim: Wiley-VCH Verlag, 2004.

    Google Scholar 

  23. Dyukova, V.I., Shilova, N.V., Galanina, O.E., Rubina, A.Yu., and Bovin, N.V., Biochim. Biophys. Acta, 2006, vol. 1760, p. 603.

    PubMed  CAS  Google Scholar 

  24. Gershon, D., Nature, 2002, vol. 416, pp. 885–891.

    Article  PubMed  CAS  Google Scholar 

  25. Fodor, S.P., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., and Adams, C.L., Nature, 1993, vol. 364, pp. 555–556.

    Article  PubMed  CAS  Google Scholar 

  26. MacBeath, G. and Schreiber, S.L., Science, 2000, vol. 289, pp. 1760–1763.

    PubMed  CAS  Google Scholar 

  27. Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J., and Kettman, J.R., Jr, Clin. Chem., 1997, vol. 43, pp. 1749–1756.

    PubMed  CAS  Google Scholar 

  28. Battersby, B.J., Bryant, D., Meutermans, W., Matthews, D., Smythe, M.L., and Trau, M., J. Am. Chem. Soc., 2000, vol. 122, pp. 2138–2139.

    Article  CAS  Google Scholar 

  29. Xu, H., Sha, M.Y., Wong, E.Y., Uphoff, J., Xu, Y., Treadway, J.A., Truong, A., O’Brien, E., Asquith, S., Stubbins, M., Spurr, N.K., Lai, E.H., and Mahoney, W., Nucleic Acid Res., 2003, vol. 31, p. e43.

    Article  PubMed  Google Scholar 

  30. Han, M., Gao, X., Su, J.Z., and Nie, S., Nat. Biotechnol., 2001, vol. 19, pp. 631–635.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao, X.W., Liu, Z.B., Yang, H., Nagai, K., Zhao, Y.H., and Gu, Z.Z., Chem. Mater., 2006, vol. 18, pp. 2443–2449.

    Article  CAS  Google Scholar 

  32. Cunin, F., Schmedake, T.A., Link, J.R., Li, Y.Y., Koh, J., Bhatia, S.N., and Sailor, M.J., Nat. Mater., 2002, vol. 1, pp. 39–41.

    Article  PubMed  CAS  Google Scholar 

  33. Su, X., Zhang, J., Sun, L., Koo, T.W., Chan, S., Sundararajan, N., Yamakawa, M., and Berlin, A.A., Nano Lett., 2005, vol. 5, pp. 49–54.

    Article  PubMed  CAS  Google Scholar 

  34. Fenniri, H., Chun, S., Ding, L., Zyrianov, Y., and Hallenga, K., J. Am. Chem. Soc., 2003, vol. 125, pp. 10546–10560.

    Article  PubMed  CAS  Google Scholar 

  35. Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., and Natan, M.J., Science, 2001, vol. 294, pp. 137–141.

    Article  PubMed  CAS  Google Scholar 

  36. Sha, M.Y., Walton, I.D., Norton, S.M., Taylor, M., Yamanaka, M., Natan, M.J., Xu, C., Drmanac, S., Huang, S., Borcherding, A., Drmanac, R., and Penn, S.G., Anal. Bioanal. Chem., 2006, vol. 384, pp. 658–666.

    Article  PubMed  CAS  Google Scholar 

  37. Evans, M., Sewter, C., and Hill, E., Assay Drug Dev. Technol., 2003, vol. 1, pp. 199–207.

    PubMed  CAS  Google Scholar 

  38. Zhi, Z.L., Morita, Y., Hasan, Q., and Tamiya, E., Anal. Chem., 2003, vol. 75, pp. 4125–4131.

    Article  PubMed  CAS  Google Scholar 

  39. Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., and Demeester, J., Nat. Mater., 2003, vol. 2, pp. 169–173.

    Article  PubMed  CAS  Google Scholar 

  40. Moran, E.J., Sarshar, S., Cargill, J.F., Shahbaz, M.M., Lio, A., Mjalli, A.M.M., and Armstrong, R.W., J. Am. Chem. Soc., 1995, vol. 117, pp. 10787–10788.

    Article  CAS  Google Scholar 

  41. Nicolaou, K.C., Xiao, X.Y., Parandoosh, Z., Senyei, A., and Nova, M.P., Angew. Chem., Int. Ed. Engl., 1995, vol. 34, pp. 2289–2291.

    Article  CAS  Google Scholar 

  42. McHugh, T.M., Miner, R.C., Logan, R.H., and Stites, D.P., J. Clin. Microbiol., 1988, vol. 26, pp. 1957–1961.

    PubMed  CAS  Google Scholar 

  43. Vaino, A.R. and Janda, K.D., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 7692–7696.

    Article  PubMed  CAS  Google Scholar 

  44. Kader, H.A., Tchernev, V.T., Satyaraj, E., Lejnine, S., Kotler, G., Kingsmore, S.F., and Patel, D.D., Am. J. Gastroenterol., 2005, vol. 100, pp. 414–423.

    Article  PubMed  CAS  Google Scholar 

  45. Hall, D.A., Ptacek, J., and Snyder, M., Mech. Ageing. Dev., 2007, vol. 128, pp. 161–167.

    Article  PubMed  CAS  Google Scholar 

  46. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., and Snyder, M., Science, 2001, vol. 293, pp. 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  47. McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13555–13560.

    Article  PubMed  CAS  Google Scholar 

  48. Ramachandran, N., Raphael, J.V., Hainsworth, E., Demirkan, G., Fuentes, M.G., Rolfs, A., Hu, Y., and LaBaer, J., Nat. Methods, 2008, vol. 5, pp. 535–538.

    Article  PubMed  CAS  Google Scholar 

  49. Situma, C., Hashimoto, M., and Soper, S.A., Biomol. Eng., 2006, vol. 23, pp. 213–231.

    Article  PubMed  CAS  Google Scholar 

  50. Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., and Mrksich, M., Science, 2002, vol. 295, pp. 1702–1705.

    Article  PubMed  CAS  Google Scholar 

  51. Yan, J., Estevez, M.J., Smith, J.E., Wang, K., He, X., Wang, L., and Tan, W., Nanotoday, 2007, vol. 2, no. 3, pp. 44–50.

    Google Scholar 

  52. Bruchez, M.., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science, 1998, vol. 281, pp. 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  53. Chan, W.C. and Nie, S., Science, 1998, vol. 281, pp. 2016–2018.

    Article  PubMed  CAS  Google Scholar 

  54. Oleinikov, V.A., Sukhanova, A.V., and Nabiev, I.R., Ross. Nanotekhnol., 2007, vol. 2, nos. 1–2, pp. 160–173.

    Google Scholar 

  55. Nabiev, I., Sukhanova, A., Artemyev, M., and Oleinikov, V., in Colloidal Nanoparticles in Biotechnology, Elissari, A., Ed., London: Wiley, 2008, pp. 133–168.

    Chapter  Google Scholar 

  56. True, L.D. and Gao, X., J. Mol. Diagn., 2007, vol. 9, pp. 7–11.

    Article  PubMed  CAS  Google Scholar 

  57. Geho, D., Lahar, N., Gurnani, P., Huebschman, M., Herrmann, P., Espina, V., Shi, A., Wulfkuhle, J., Garner, H., and Petricoin, E., 3rd, Liotta, L.A., and Rosenblatt, K.P., Bioconjug. Chem., 2005, vol. 16, pp. 559–566.

    Article  PubMed  CAS  Google Scholar 

  58. Rousserie, G., Sukhanova, A., Even-Desrumeaux, K., Fleury, F., Chames, P., Baty, D., Oleinikov, V., Pluot, M., Cohen, J.H.M., and Nabiev, I., Crit. Rev. Oncol./Hematol., 2010, vol. 74, pp. 1–15.

    Article  Google Scholar 

  59. Alivisatos, A.P., Science, 1996, vol. 271, pp. 933–937.

    Article  CAS  Google Scholar 

  60. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., J. Phys. Chem. B, 1997, vol. 101, pp. 9463–9475.

    Article  CAS  Google Scholar 

  61. Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, pp. 8706–8715.

    Article  CAS  Google Scholar 

  62. Sukhanova, A., Venteo, L., Devy, J., Artemyev, M., Oleinikov, V., Pluot, M., and Nabiev, I., Lab. Invest./Brief Meth., 2002, vol. 82, no. 9, pp. 1259–1261.

    Google Scholar 

  63. Leatherdale, C.A., Woo, W.K., Mikulec, F.V., and Bawendi, M.G., J. Phys. Chem. B, 2002, vol. 106, pp. 7619–7622.

    Article  CAS  Google Scholar 

  64. Zhong, X., Feng, Y., Knoll, W., and Han, M., J. Am. Chem. Soc., 2003, vol. 125, pp. 13559–13563.

    Article  PubMed  CAS  Google Scholar 

  65. Azzazy, H.M.E., Mansour, M.M.H., and Kazmierczak, S.C., Clin. Biochem., 2007, vol. 40, pp. 917–927.

    Article  PubMed  CAS  Google Scholar 

  66. Williams, Y., Sukhanova, A., Nowostawska, M., Davies, A.M., Mitchel, S., Oleinikov, V., Gun’ko, Y., Nabiev, I., Kelleher, D., and Volkov, Y., Small, 2009, vol. 5, no. 22, pp. 2581–2588.

    Article  PubMed  CAS  Google Scholar 

  67. Mahmoud, W., Sukhanova, A., Oleinikov, V., Rakovich, Y., Donegan, J.F., Pluot, M., Cohen, J.H.M., Volkov, Y., and Nabiev, I., Proteomics, 2010, vol. 10, pp. 700–716.

    Article  PubMed  CAS  Google Scholar 

  68. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Science, 2005, vol. 307, no. 5709, pp. 538–544.

    Article  PubMed  CAS  Google Scholar 

  69. Haugland, R.P., The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, San Diego: Invitrogen Corp., 2005.

    Google Scholar 

  70. Tavares, A.J., Chong, L., Petryayeva, E., Algar, R., and Krull, U.J., Anal. Bioanal. Chem., 2010, DOI: 10.1007/s00216-010-4010-3, Publ. online July 25, 2010.

  71. Karlin-Neumann, G., Sedova, M., Falkowski, M., Wang, Z., Lin, S., and Jain, M., Methods Mol. Biol., 2007, vol. 374, pp. 239–251.

    PubMed  CAS  Google Scholar 

  72. Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., Klinov, D., Pluot, M., Cohen, J.H.M., and Nabiev, I., Anal. Biochem., 2004, vol. 324, no. 1, pp. 60–67.

    Article  PubMed  CAS  Google Scholar 

  73. Hohng, S. and Ha, T., Chemphyschem, 2005, vol. 6, pp. 956–960.

    Article  PubMed  CAS  Google Scholar 

  74. Pathak, S., Davidson, M.C., and Silva, G.A., Nano Lett., 2007, vol. 7, pp. 1839–1845.

    Article  PubMed  CAS  Google Scholar 

  75. Shingyoji, M., Gerion, D., Pinkel, D., Gray, J.W., and Chen, F., Talanta, 2005, vol. 67, pp. 472–478.

    Article  PubMed  CAS  Google Scholar 

  76. Finkel, N.H., Lou, X.H., Wang, C.Y., and He, L., Anal. Chem., 2004, vol. 76, p. 352.

    Article  Google Scholar 

  77. Braeckmans, K., De Smedt, S.C., Leblans, M., Pauwels, R., and Demeester, J., Nat. Rev. Drug. Discovery, 2002, vol. 1, pp. 447–456.

    Article  CAS  Google Scholar 

  78. Fortina, P., Kricka, L.J., Surrey, S., and Grodzinski, P., Trends Biotechnol., 2005, vol. 23, pp. 168–173.

    Article  PubMed  CAS  Google Scholar 

  79. Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., and Demeester, J., Mod. Drug Discovery, 2003, vol. 6, pp. 28–32.

    CAS  Google Scholar 

  80. Fan, J.B., Chee, M.S., and Gunderson, K.L., Nat. Rev. Genet., 2006, vol. 7, pp. 632–644.

    Article  PubMed  CAS  Google Scholar 

  81. Meza, M.B., Drug Discovery Today, 2000, vol. 5, Suppl. 1, pp. 38–41.

    Article  Google Scholar 

  82. Nolan, J.P. and Sklar, L.A., Trends Biotechnol., 2002, vol. 20, pp. 9–12.

    Article  PubMed  CAS  Google Scholar 

  83. Service, R.F., Science, 1995, vol. 270, p. 577.

    Article  CAS  Google Scholar 

  84. Pregibon, D.C., Toner, M., and Doyle, P.S., Science, 2007, vol. 315, pp. 1393–1396.

    Article  PubMed  CAS  Google Scholar 

  85. Vignali, D.A., J. Immunol. Methods, 2000, vol. 243, pp. 243–255.

    Article  PubMed  CAS  Google Scholar 

  86. Kellar, K.L. and Iannone, M.A., Exp. Hematol., 2002, vol. 30, pp. 1227–1237.

    Article  PubMed  CAS  Google Scholar 

  87. Kellar, K.L. and Douglass, J.P., J. Immunol. Methods, 2003, vol. 279, pp. 277–285.

    Article  PubMed  CAS  Google Scholar 

  88. Lukacs, Z., Dietrich, A., Ganschow, R., Kohlschutter, A., and Kruithof, R., Clin. Chem. Lab. Med., 2005, vol. 43, pp. 141–145.

    Article  PubMed  CAS  Google Scholar 

  89. Hurley, J.D., Engle, L.J., Davis, J.T., Welsh, A.M., and Landers, J.E., Nucleic Acids Res., 2004, vol. 32.

  90. Luo, Y., Curr. Opin. Mol. Ther., 2005, vol. 7, pp. 251–255.

    PubMed  CAS  Google Scholar 

  91. Whitehead, G.S., Walker, J.K.L., Berman, K.G., Foster, W.M., and Schwartz, D.A., Am. J. Physiol. Lung. Cell. Mol. Physiol., 2003, vol. 285, pp. L32–L42.

    PubMed  CAS  Google Scholar 

  92. Yan, X., Zhong, W., Tang, A., Schielke, E.G., Hang, W., and Nolan, J.P., Anal. Chem., 2005, vol. 77, pp. 7673–7678.

    Article  PubMed  CAS  Google Scholar 

  93. McBride, M.T., Gammon, S., Pitesky, M., O’Brien, T.W., Smith, T., Aldrich, J., Langlois, R.G., Colston, B., and Venkateswaran, K.S., Anal. Chem., 2003, vol. 75, pp. 1924–1930.

    Article  PubMed  CAS  Google Scholar 

  94. Morgan, E., Varro, R., Sepulveda, H., Ember, J.A., Apgar, J., Wilson, J., Lowe, L., Chen, R., Shivraj, L., Agadir, A., Campos, R., Ernst, D., and Gaur, A., Clin. Immunol., 2004, vol. 110, pp. 252–266.

    Article  PubMed  CAS  Google Scholar 

  95. Tarnok, A., Hambsch, J., Chen, R., and Varro, R., Clin. Chem., 2003, vol. 49, pp. 1000–1002.

    Article  PubMed  CAS  Google Scholar 

  96. Robinson, W.H., DiGennaro, C., Hueber, W., Haab, B.B., Kamachi, M., Dean, E.J., Fournel, S., Fong, D., Genovese, M.C., de Vegvar, H.E., Skriner, K., Hirschberg, D.L., Morris, R.I., Muller, S., Pruijn, G.J., van Venrooij, W.J., Smolen, J.S., Drown, P.O., Steinman, L., and Utz, P.J., Nat. Med., 2002, vol. 8, pp. 295–301.

    Article  PubMed  CAS  Google Scholar 

  97. Stsiapura, V., Sukhanova, A., Artemyev, M., Pluot, M., Cohen, J.H.M., Baranov, A., Oleinikov, V., and Nabiev, I., Anal. Biochem., 2004, vol. 342, no. 2, pp. 257–265.

    Article  CAS  Google Scholar 

  98. Generalova, A.N., Sizova, S.V., Gontsova, M.S., Baranov, A.V., Maslov, V.G., Artem’ev, M.V., Klinov, D.V., Mochalov, K.E., Zubov, V.P., and Oleinikov, V.A., Ross. Nanotekhnol., 2007, vol. 2, nos. 7–8, pp. 144–154.

    Google Scholar 

  99. Generalova, A.N., Sizova, S.V., Oleinikov, V.A., Zubov, V.P., Artemyev, M., Spernath, L., Kamyshny, A., and Magdassi, S., Colloids and Surfaces A. Physicochem. Engineer. Asp., 2009, vol. 342, pp. 59–64.

    Article  CAS  Google Scholar 

  100. Sheng, W., Kim, S., Lee, J., Kim, S.W., Jensen, K., and Bawendi, M.G., Langmuir, 2006, vol. 22, pp. 3782–3790.

    Article  PubMed  CAS  Google Scholar 

  101. Joumaa, N., Lansalot, M., Thretz, A., Elaissari, A., Sukhanova, A., Artemyev, M., Nabiev, I., and Cohen, J.H.M., Langmuir, 2006, vol. 22, pp. 1810–1816.

    Article  PubMed  CAS  Google Scholar 

  102. Susha, A.S., Caruso, F., Rogach, A.L., Sukhorukov, G.B., Kornowski, A., Mohwald, H., Giersig, M., Eychmuller, A., and Weller, H., Colloids Surfaces A. Physicochem. Engineer. Asp., 2000, vol. 163, pp. 39–44.

    Article  CAS  Google Scholar 

  103. Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Mohwald, H., Eychmuller, A., and Weller, H., Adv. Mater., 2000, vol. 12, no. 5, pp. 333–337.

    Article  CAS  Google Scholar 

  104. Wang, D., Rogach, A.L., and Caruso, F., Nano Lett., 2002, vol. 2, pp. 857–861.

    Article  CAS  Google Scholar 

  105. Gaponik, N., Radtchenko, I.L., Sukhorukov, G.B., Weller, H., and Rogach, A.L., Adv. Mater., 2002, vol. 14, pp. 879–882.

    Article  CAS  Google Scholar 

  106. Ma, Q., Wang, X., Li, Y., Shi, Y., and Su, X., Talanta, 2007, vol. 72, pp. 1446–1452.

    Article  PubMed  CAS  Google Scholar 

  107. Gaponik, N., Radtchenko, I.L., Gerstenberger, M.R., Fedutik, Y.A., Sukhorukov, G.B., and Rogach, A.L., Nano Lett., 2003, vol. 3, pp. 369–372.

    Article  CAS  Google Scholar 

  108. Sukhanova, A., Susha, A.S., Bek, A., Mayilo, S., Rogach, A.L., Feldmann, J., Oleinikov, V., Reveil, B., Donvito, B., Cohen, J.H.M., and Nabiev, I., Nano Lett., 2007, vol. 7, no. 8, pp. 2322–2327.

    Article  PubMed  CAS  Google Scholar 

  109. Gao, X.H. and Nie, S.M., Anal. Chem., 2004, vol. 76, pp. 2406–2410.

    Article  PubMed  CAS  Google Scholar 

  110. Eastman, P.S., Ruan, W., Doctolero, M., Nuttall, R., de Feo, G., Park, J.S., Chu, J.S., Cooke, P., Gray, J.W., Li, S., and Chen, F.F., Nano Lett., 2006, vol. 6, pp. 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  111. Schwartz, D.E., Gong, P., and Shepard, K.L., Biosens. Bioelectron., 2008, vol. 24, pp. 383–390.

    Article  PubMed  CAS  Google Scholar 

  112. Schuler, B. and Eaton, W.A., Curr. Opin. Struct. Biol., 2008, vol. 18, pp. 16–26.

    Article  PubMed  CAS  Google Scholar 

  113. Gertler, A., Biener, E., Ramanujan, K.V., Djiane, J., and Herman, B., J. Dairy Res., 2005, vol. 72, p. 9.

    Article  CAS  Google Scholar 

  114. Hallworth, R., Currall, B., Nichols, M.G., Wu, X., and Zuo, J., Brain Res., 2006, vol. 1091, pp. 122–131.

    Article  PubMed  CAS  Google Scholar 

  115. Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., and Mauro, J.M., Nat. Mater., 2003, vol. 2, pp. 630–638.

    Article  PubMed  CAS  Google Scholar 

  116. Wargnier, R., Baranov, A., Maslov, V., Stsiapura, V., Sukhanova, A., Pluot, M., and Nabiev, I., Nano Lett., 2004, vol. 4, pp. 451–457.

    Article  CAS  Google Scholar 

  117. Sukhanova, A., Baranov, A.V., Perova, T., Cohen, J.H.M., and Nabiev, I., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, pp. 2048–2052.

    Article  CAS  Google Scholar 

  118. Sukhanova, A., Venteo, L., Cohen, J.H.M., Pluot, M., and Nabiev, I., Ann. Acad. Pharm. Franc., 2006, vol. 64, pp. 125–134.

    CAS  Google Scholar 

  119. Sukhanova, A. and Nabiev, I., Expert. Opin. Med. Diagn., 2008, vol. 2, pp. 429–447.

    Article  CAS  Google Scholar 

  120. Nabiev, I., Mitchell, S., Davies, A., Willyams, Y., Kelleher, D., Moore, R., Gin’ko, Y.K., Byrne, S., Rakovich, Y.P., Donegan, J.F., Sukhanova, A., Conroy, J., Cottell, D., Gaponik, N., Rogach, A., and Volkov, Y., Nano Lett., 2007, vol. 7, pp. 3452–3461.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Oleinikov.

Additional information

Original Russian Text © V.A. Oleinikov, 2011, published in Bioorganicheskaya Khimiya, 2011, Vol. 37, No. 2, pp. 171–189.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleinikov, V.A. Fluorescent semiconductor nanocrystals (quantum dots) in protein biochips. Russ J Bioorg Chem 37, 151–167 (2011). https://doi.org/10.1134/S1068162011020117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162011020117

Keywords

Navigation