Fluorescent semiconductor nanocrystals (quantum dots) in protein biochips

Abstract

Understanding the biological processes in cells, tissues, and organisms requires the identification and analysis of multiple biological objects and the mechanisms of their functioning and regulation. The biological chip (biochip) technique is one of the most efficient tools for these tasks. Biochips are highly efficient and can quantitatively register multiple molecules simultaneously in samples of microscopic volume. Biochips allow the parallel genomic or proteomic analysis of normal or pathologically modified cells and tissues and a comparative analysis to elucidate disease-related changes. Fluorescent dyes used for signal readout from biochips have the following disadvantages: low photostability, low brightness, and the presence of a fluorescent background. It was recently shown that these limitations can be removed if fluorescent semiconductor nanocrystals (quantum dots) are used. Individual quantum dots in the form of colloid nanocrystals (QDs) are easily registered by conventional microscopic equipment due to their high brightness; they are extremely resistant to photobleaching and provide unique opportunities for multiplexing. QDs are ideal fluorophores for information readout from biochips and allow for the detection of single molecules.

The present work is aimed at developing approaches for the use of QDs in biochip-based detection systems. The possibilities of using QDs in both planar (or matrix) biochips and suspension (or liquid) biochips, which are undergoing intensive development, are demonstrated. The use of the latter in analytical systems for the simultaneous identification of multiple objects in proteomics, genomics, drug testing, and clinical diagnostics is currently increasing. These systems are based on spectrally coded elements (usually polymer microspheres). An advantage of liquid biochips over matrix planar solid biochips is the possibility of the free movement of microspheres in three-dimensional space. Organic fluorophores allow the realization of a limited number of codes, i.e., objects analyzed simultaneously (multiplexing), while semiconductor QDs make possible a significant increase in both biochip multiplexing and the photostability and sensitivity of the biochips. In addition, the use of FRET (Foerster resonance energy transfer) in liquid biochips makes possible an increase in the detection specificity. The absence of a background signal from the fluorescent labels not bound to the microparticles increases the sensitivity of the analysis and provides additional opportunities for multiplex analysis and diagnostics.

Thus, a combination of the biochip technique and semiconductor QDs makes it possible to increase the method’s sensitivity and the number of objects detected (the degree of multiplexing). This combination is likely to enable a significant breakthrough in proteomics, particularly in the development of new drugs, clinical diagnostics, identification of molecular markers, and elucidation of the intracellular processes.

This is a preview of subscription content, access via your institution.

Abbreviations

QDs:

colloid nanocrystal quantum dots

FRET:

Foerster resonance energy transfer

References

  1. 1.

    Stoll, D., Templin, M.F., Schrenk, M., Traub, P.C., Vohringer, C.F., and Joos, T.O., Front Biosci., 2002, vol. 7, pp. 13–32.

    Article  Google Scholar 

  2. 2.

    Stoll, D., Bachmann, J., Templin, M.F., and Joos, T.O., Targets, 2004, vol. 3, p. 24.

    CAS  Google Scholar 

  3. 3.

    Chen, C.-S. and Zhu, H., BioTechniques, 2006, vol. 40, p. 423.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Chechetkin, V.R., Prokopenko, D.V., Makarov, A.A., and Zasedatelev, A.S., Ross. Nanotekhnol., 2006, vol. 1, pp. 13–27.

    Google Scholar 

  5. 5.

    Gracey, A.Y. and Cossins, A.R., Annu. Rev. Physiol., 2003, vol. 65, pp. 231–259.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A., Anal. Biochem., 2000, vol. 278, pp. 123–131.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Tao, S.C., Chen, C.S., and Zhu, H., Comb. Chem. High Throughput Screen, 2007, vol. 10, pp. 706–718.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Lee, Y., Lee, E.K., Cho, Y.W., Matsui, T., Kang, I.C., Kim, T.S., and Han, M.H., Proteomics, 2003, vol. 3, pp. 2289–2304.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Sasakura, Y., Kanda, K., Yoshimura-Suzuki, T., Matsui, T., Fukuzono, S., and Shimizu, T., Biochemistry, 2005, vol. 44, pp. 9598–9605.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Zha, H., Raffeld, M., Charboneau, L., Pittaluga, S., Kwak, L.W., and Petricoin, E. 3rd, Liotta, L.A., and Jaffe, E.S., Lab. Invest., 2004, vol. 84, pp. 235–244.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Chan, S.M., Weng, A.P., Tibshirani, R., Aster, J.C., and Utz, P.J., Blood, 2007, vol. 110, pp. 278–286.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Li, B., Zhou, D., Wang, Z., Song, Z., Wang, H., Li, M., Dong, X., Wu, M., Guo, Z., and Yang, R., Microbes. Infect., 2008, vol. 10, pp. 45–51.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Xu, R., Gan, X., Fang, Y., Zheng, S., and Dong, Q., Anal. Biochem., 2007, vol. 362, pp. 69–75.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Mirzabekov, A.D., Vestn. Ross. Akad. Nauk, 2003, vol. 73, p. 412.

    CAS  Google Scholar 

  15. 15.

    Zajac, A., Song, D., Qian, W., and Zhukov, T., Colloids Surf., 2007, vol. 58, pp. 309–314.

    CAS  Article  Google Scholar 

  16. 16.

    Yuk, C.S., Lee, H.K., Kim, H.T., Choi, Y.K., Lee, B.C., Chun, B.H., and Chung, N., Biotechnol. Lett., 2004, vol. 26, pp. 1563–1568.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Zhu, H., Hu, S., Jona, G., Zhu, X., Kreiswirth, N., Willey, B.M., Mazzulli, T., Liu, G., Song, Q., Chen, P., Cameron, M., Tyler, A., Wang, J., Wen, J., Chen, W., Compton, S., and Snyder, M., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 4011–4016.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Smith, A.M., Dave, S., Nie, S., True, L., and Gao, X., Expert. Rev. Mol. Diagn., 2006, vol. 6, pp. 231–244.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Kolchinskii, A.M., Barskii, V.E., and Zasedatelev, A.S., Mol. Biol., 2007, vol. 41, pp. 757–764.

    Google Scholar 

  20. 20.

    Ryabykh, T.P., Osipova, T.V., Dement’eva, E.I., Rubina, A.Yu., Darii, E.I., Baryshnikov, A.Yu., Zasedatelev, A.S., and Mirzabekov, A.D., Ross. Bioterapevt. Zh., 2004, vol. 3, pp. 30–31.

    Google Scholar 

  21. 21.

    Gryadunov, D.A., Zimenkov, D.V., Mikhailovich, V.M., Nasedkina, T.V., Dement’eva, E.I., Rubina, A.Yu., Pan’kov, S.V., Barskii, V.E., and Zasedatelev, A.S., Med. Alfavit. Lab., 2009, vol. 3, pp. 10–14.

    Google Scholar 

  22. 22.

    Protein Microarray Technology, Kambhampati, D., Ed., Weinheim: Wiley-VCH Verlag, 2004.

    Google Scholar 

  23. 23.

    Dyukova, V.I., Shilova, N.V., Galanina, O.E., Rubina, A.Yu., and Bovin, N.V., Biochim. Biophys. Acta, 2006, vol. 1760, p. 603.

    PubMed  CAS  Google Scholar 

  24. 24.

    Gershon, D., Nature, 2002, vol. 416, pp. 885–891.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Fodor, S.P., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., and Adams, C.L., Nature, 1993, vol. 364, pp. 555–556.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    MacBeath, G. and Schreiber, S.L., Science, 2000, vol. 289, pp. 1760–1763.

    PubMed  CAS  Google Scholar 

  27. 27.

    Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J., and Kettman, J.R., Jr, Clin. Chem., 1997, vol. 43, pp. 1749–1756.

    PubMed  CAS  Google Scholar 

  28. 28.

    Battersby, B.J., Bryant, D., Meutermans, W., Matthews, D., Smythe, M.L., and Trau, M., J. Am. Chem. Soc., 2000, vol. 122, pp. 2138–2139.

    CAS  Article  Google Scholar 

  29. 29.

    Xu, H., Sha, M.Y., Wong, E.Y., Uphoff, J., Xu, Y., Treadway, J.A., Truong, A., O’Brien, E., Asquith, S., Stubbins, M., Spurr, N.K., Lai, E.H., and Mahoney, W., Nucleic Acid Res., 2003, vol. 31, p. e43.

    PubMed  Article  Google Scholar 

  30. 30.

    Han, M., Gao, X., Su, J.Z., and Nie, S., Nat. Biotechnol., 2001, vol. 19, pp. 631–635.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Zhao, X.W., Liu, Z.B., Yang, H., Nagai, K., Zhao, Y.H., and Gu, Z.Z., Chem. Mater., 2006, vol. 18, pp. 2443–2449.

    CAS  Article  Google Scholar 

  32. 32.

    Cunin, F., Schmedake, T.A., Link, J.R., Li, Y.Y., Koh, J., Bhatia, S.N., and Sailor, M.J., Nat. Mater., 2002, vol. 1, pp. 39–41.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Su, X., Zhang, J., Sun, L., Koo, T.W., Chan, S., Sundararajan, N., Yamakawa, M., and Berlin, A.A., Nano Lett., 2005, vol. 5, pp. 49–54.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Fenniri, H., Chun, S., Ding, L., Zyrianov, Y., and Hallenga, K., J. Am. Chem. Soc., 2003, vol. 125, pp. 10546–10560.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., and Natan, M.J., Science, 2001, vol. 294, pp. 137–141.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Sha, M.Y., Walton, I.D., Norton, S.M., Taylor, M., Yamanaka, M., Natan, M.J., Xu, C., Drmanac, S., Huang, S., Borcherding, A., Drmanac, R., and Penn, S.G., Anal. Bioanal. Chem., 2006, vol. 384, pp. 658–666.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Evans, M., Sewter, C., and Hill, E., Assay Drug Dev. Technol., 2003, vol. 1, pp. 199–207.

    PubMed  CAS  Google Scholar 

  38. 38.

    Zhi, Z.L., Morita, Y., Hasan, Q., and Tamiya, E., Anal. Chem., 2003, vol. 75, pp. 4125–4131.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., and Demeester, J., Nat. Mater., 2003, vol. 2, pp. 169–173.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Moran, E.J., Sarshar, S., Cargill, J.F., Shahbaz, M.M., Lio, A., Mjalli, A.M.M., and Armstrong, R.W., J. Am. Chem. Soc., 1995, vol. 117, pp. 10787–10788.

    CAS  Article  Google Scholar 

  41. 41.

    Nicolaou, K.C., Xiao, X.Y., Parandoosh, Z., Senyei, A., and Nova, M.P., Angew. Chem., Int. Ed. Engl., 1995, vol. 34, pp. 2289–2291.

    CAS  Article  Google Scholar 

  42. 42.

    McHugh, T.M., Miner, R.C., Logan, R.H., and Stites, D.P., J. Clin. Microbiol., 1988, vol. 26, pp. 1957–1961.

    PubMed  CAS  Google Scholar 

  43. 43.

    Vaino, A.R. and Janda, K.D., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 7692–7696.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Kader, H.A., Tchernev, V.T., Satyaraj, E., Lejnine, S., Kotler, G., Kingsmore, S.F., and Patel, D.D., Am. J. Gastroenterol., 2005, vol. 100, pp. 414–423.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Hall, D.A., Ptacek, J., and Snyder, M., Mech. Ageing. Dev., 2007, vol. 128, pp. 161–167.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., and Snyder, M., Science, 2001, vol. 293, pp. 2101–2105.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13555–13560.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Ramachandran, N., Raphael, J.V., Hainsworth, E., Demirkan, G., Fuentes, M.G., Rolfs, A., Hu, Y., and LaBaer, J., Nat. Methods, 2008, vol. 5, pp. 535–538.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Situma, C., Hashimoto, M., and Soper, S.A., Biomol. Eng., 2006, vol. 23, pp. 213–231.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., and Mrksich, M., Science, 2002, vol. 295, pp. 1702–1705.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Yan, J., Estevez, M.J., Smith, J.E., Wang, K., He, X., Wang, L., and Tan, W., Nanotoday, 2007, vol. 2, no. 3, pp. 44–50.

    Google Scholar 

  52. 52.

    Bruchez, M.., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science, 1998, vol. 281, pp. 2013–2016.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Chan, W.C. and Nie, S., Science, 1998, vol. 281, pp. 2016–2018.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Oleinikov, V.A., Sukhanova, A.V., and Nabiev, I.R., Ross. Nanotekhnol., 2007, vol. 2, nos. 1–2, pp. 160–173.

    Google Scholar 

  55. 55.

    Nabiev, I., Sukhanova, A., Artemyev, M., and Oleinikov, V., in Colloidal Nanoparticles in Biotechnology, Elissari, A., Ed., London: Wiley, 2008, pp. 133–168.

    Google Scholar 

  56. 56.

    True, L.D. and Gao, X., J. Mol. Diagn., 2007, vol. 9, pp. 7–11.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Geho, D., Lahar, N., Gurnani, P., Huebschman, M., Herrmann, P., Espina, V., Shi, A., Wulfkuhle, J., Garner, H., and Petricoin, E., 3rd, Liotta, L.A., and Rosenblatt, K.P., Bioconjug. Chem., 2005, vol. 16, pp. 559–566.

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Rousserie, G., Sukhanova, A., Even-Desrumeaux, K., Fleury, F., Chames, P., Baty, D., Oleinikov, V., Pluot, M., Cohen, J.H.M., and Nabiev, I., Crit. Rev. Oncol./Hematol., 2010, vol. 74, pp. 1–15.

    Article  Google Scholar 

  59. 59.

    Alivisatos, A.P., Science, 1996, vol. 271, pp. 933–937.

    CAS  Article  Google Scholar 

  60. 60.

    Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., J. Phys. Chem. B, 1997, vol. 101, pp. 9463–9475.

    CAS  Article  Google Scholar 

  61. 61.

    Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, pp. 8706–8715.

    CAS  Article  Google Scholar 

  62. 62.

    Sukhanova, A., Venteo, L., Devy, J., Artemyev, M., Oleinikov, V., Pluot, M., and Nabiev, I., Lab. Invest./Brief Meth., 2002, vol. 82, no. 9, pp. 1259–1261.

    Google Scholar 

  63. 63.

    Leatherdale, C.A., Woo, W.K., Mikulec, F.V., and Bawendi, M.G., J. Phys. Chem. B, 2002, vol. 106, pp. 7619–7622.

    CAS  Article  Google Scholar 

  64. 64.

    Zhong, X., Feng, Y., Knoll, W., and Han, M., J. Am. Chem. Soc., 2003, vol. 125, pp. 13559–13563.

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Azzazy, H.M.E., Mansour, M.M.H., and Kazmierczak, S.C., Clin. Biochem., 2007, vol. 40, pp. 917–927.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Williams, Y., Sukhanova, A., Nowostawska, M., Davies, A.M., Mitchel, S., Oleinikov, V., Gun’ko, Y., Nabiev, I., Kelleher, D., and Volkov, Y., Small, 2009, vol. 5, no. 22, pp. 2581–2588.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Mahmoud, W., Sukhanova, A., Oleinikov, V., Rakovich, Y., Donegan, J.F., Pluot, M., Cohen, J.H.M., Volkov, Y., and Nabiev, I., Proteomics, 2010, vol. 10, pp. 700–716.

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Science, 2005, vol. 307, no. 5709, pp. 538–544.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Haugland, R.P., The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, San Diego: Invitrogen Corp., 2005.

    Google Scholar 

  70. 70.

    Tavares, A.J., Chong, L., Petryayeva, E., Algar, R., and Krull, U.J., Anal. Bioanal. Chem., 2010, DOI: 10.1007/s00216-010-4010-3, Publ. online July 25, 2010.

  71. 71.

    Karlin-Neumann, G., Sedova, M., Falkowski, M., Wang, Z., Lin, S., and Jain, M., Methods Mol. Biol., 2007, vol. 374, pp. 239–251.

    PubMed  CAS  Google Scholar 

  72. 72.

    Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., Klinov, D., Pluot, M., Cohen, J.H.M., and Nabiev, I., Anal. Biochem., 2004, vol. 324, no. 1, pp. 60–67.

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Hohng, S. and Ha, T., Chemphyschem, 2005, vol. 6, pp. 956–960.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Pathak, S., Davidson, M.C., and Silva, G.A., Nano Lett., 2007, vol. 7, pp. 1839–1845.

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Shingyoji, M., Gerion, D., Pinkel, D., Gray, J.W., and Chen, F., Talanta, 2005, vol. 67, pp. 472–478.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Finkel, N.H., Lou, X.H., Wang, C.Y., and He, L., Anal. Chem., 2004, vol. 76, p. 352.

    Article  Google Scholar 

  77. 77.

    Braeckmans, K., De Smedt, S.C., Leblans, M., Pauwels, R., and Demeester, J., Nat. Rev. Drug. Discovery, 2002, vol. 1, pp. 447–456.

    CAS  Article  Google Scholar 

  78. 78.

    Fortina, P., Kricka, L.J., Surrey, S., and Grodzinski, P., Trends Biotechnol., 2005, vol. 23, pp. 168–173.

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., and Demeester, J., Mod. Drug Discovery, 2003, vol. 6, pp. 28–32.

    CAS  Google Scholar 

  80. 80.

    Fan, J.B., Chee, M.S., and Gunderson, K.L., Nat. Rev. Genet., 2006, vol. 7, pp. 632–644.

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Meza, M.B., Drug Discovery Today, 2000, vol. 5, Suppl. 1, pp. 38–41.

    Article  Google Scholar 

  82. 82.

    Nolan, J.P. and Sklar, L.A., Trends Biotechnol., 2002, vol. 20, pp. 9–12.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Service, R.F., Science, 1995, vol. 270, p. 577.

    CAS  Article  Google Scholar 

  84. 84.

    Pregibon, D.C., Toner, M., and Doyle, P.S., Science, 2007, vol. 315, pp. 1393–1396.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Vignali, D.A., J. Immunol. Methods, 2000, vol. 243, pp. 243–255.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Kellar, K.L. and Iannone, M.A., Exp. Hematol., 2002, vol. 30, pp. 1227–1237.

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Kellar, K.L. and Douglass, J.P., J. Immunol. Methods, 2003, vol. 279, pp. 277–285.

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Lukacs, Z., Dietrich, A., Ganschow, R., Kohlschutter, A., and Kruithof, R., Clin. Chem. Lab. Med., 2005, vol. 43, pp. 141–145.

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Hurley, J.D., Engle, L.J., Davis, J.T., Welsh, A.M., and Landers, J.E., Nucleic Acids Res., 2004, vol. 32.

  90. 90.

    Luo, Y., Curr. Opin. Mol. Ther., 2005, vol. 7, pp. 251–255.

    PubMed  CAS  Google Scholar 

  91. 91.

    Whitehead, G.S., Walker, J.K.L., Berman, K.G., Foster, W.M., and Schwartz, D.A., Am. J. Physiol. Lung. Cell. Mol. Physiol., 2003, vol. 285, pp. L32–L42.

    PubMed  CAS  Google Scholar 

  92. 92.

    Yan, X., Zhong, W., Tang, A., Schielke, E.G., Hang, W., and Nolan, J.P., Anal. Chem., 2005, vol. 77, pp. 7673–7678.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    McBride, M.T., Gammon, S., Pitesky, M., O’Brien, T.W., Smith, T., Aldrich, J., Langlois, R.G., Colston, B., and Venkateswaran, K.S., Anal. Chem., 2003, vol. 75, pp. 1924–1930.

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Morgan, E., Varro, R., Sepulveda, H., Ember, J.A., Apgar, J., Wilson, J., Lowe, L., Chen, R., Shivraj, L., Agadir, A., Campos, R., Ernst, D., and Gaur, A., Clin. Immunol., 2004, vol. 110, pp. 252–266.

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Tarnok, A., Hambsch, J., Chen, R., and Varro, R., Clin. Chem., 2003, vol. 49, pp. 1000–1002.

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Robinson, W.H., DiGennaro, C., Hueber, W., Haab, B.B., Kamachi, M., Dean, E.J., Fournel, S., Fong, D., Genovese, M.C., de Vegvar, H.E., Skriner, K., Hirschberg, D.L., Morris, R.I., Muller, S., Pruijn, G.J., van Venrooij, W.J., Smolen, J.S., Drown, P.O., Steinman, L., and Utz, P.J., Nat. Med., 2002, vol. 8, pp. 295–301.

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Stsiapura, V., Sukhanova, A., Artemyev, M., Pluot, M., Cohen, J.H.M., Baranov, A., Oleinikov, V., and Nabiev, I., Anal. Biochem., 2004, vol. 342, no. 2, pp. 257–265.

    Article  CAS  Google Scholar 

  98. 98.

    Generalova, A.N., Sizova, S.V., Gontsova, M.S., Baranov, A.V., Maslov, V.G., Artem’ev, M.V., Klinov, D.V., Mochalov, K.E., Zubov, V.P., and Oleinikov, V.A., Ross. Nanotekhnol., 2007, vol. 2, nos. 7–8, pp. 144–154.

    Google Scholar 

  99. 99.

    Generalova, A.N., Sizova, S.V., Oleinikov, V.A., Zubov, V.P., Artemyev, M., Spernath, L., Kamyshny, A., and Magdassi, S., Colloids and Surfaces A. Physicochem. Engineer. Asp., 2009, vol. 342, pp. 59–64.

    CAS  Article  Google Scholar 

  100. 100.

    Sheng, W., Kim, S., Lee, J., Kim, S.W., Jensen, K., and Bawendi, M.G., Langmuir, 2006, vol. 22, pp. 3782–3790.

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Joumaa, N., Lansalot, M., Thretz, A., Elaissari, A., Sukhanova, A., Artemyev, M., Nabiev, I., and Cohen, J.H.M., Langmuir, 2006, vol. 22, pp. 1810–1816.

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Susha, A.S., Caruso, F., Rogach, A.L., Sukhorukov, G.B., Kornowski, A., Mohwald, H., Giersig, M., Eychmuller, A., and Weller, H., Colloids Surfaces A. Physicochem. Engineer. Asp., 2000, vol. 163, pp. 39–44.

    CAS  Article  Google Scholar 

  103. 103.

    Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Mohwald, H., Eychmuller, A., and Weller, H., Adv. Mater., 2000, vol. 12, no. 5, pp. 333–337.

    CAS  Article  Google Scholar 

  104. 104.

    Wang, D., Rogach, A.L., and Caruso, F., Nano Lett., 2002, vol. 2, pp. 857–861.

    CAS  Article  Google Scholar 

  105. 105.

    Gaponik, N., Radtchenko, I.L., Sukhorukov, G.B., Weller, H., and Rogach, A.L., Adv. Mater., 2002, vol. 14, pp. 879–882.

    CAS  Article  Google Scholar 

  106. 106.

    Ma, Q., Wang, X., Li, Y., Shi, Y., and Su, X., Talanta, 2007, vol. 72, pp. 1446–1452.

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Gaponik, N., Radtchenko, I.L., Gerstenberger, M.R., Fedutik, Y.A., Sukhorukov, G.B., and Rogach, A.L., Nano Lett., 2003, vol. 3, pp. 369–372.

    CAS  Article  Google Scholar 

  108. 108.

    Sukhanova, A., Susha, A.S., Bek, A., Mayilo, S., Rogach, A.L., Feldmann, J., Oleinikov, V., Reveil, B., Donvito, B., Cohen, J.H.M., and Nabiev, I., Nano Lett., 2007, vol. 7, no. 8, pp. 2322–2327.

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Gao, X.H. and Nie, S.M., Anal. Chem., 2004, vol. 76, pp. 2406–2410.

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Eastman, P.S., Ruan, W., Doctolero, M., Nuttall, R., de Feo, G., Park, J.S., Chu, J.S., Cooke, P., Gray, J.W., Li, S., and Chen, F.F., Nano Lett., 2006, vol. 6, pp. 1059–1064.

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Schwartz, D.E., Gong, P., and Shepard, K.L., Biosens. Bioelectron., 2008, vol. 24, pp. 383–390.

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Schuler, B. and Eaton, W.A., Curr. Opin. Struct. Biol., 2008, vol. 18, pp. 16–26.

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Gertler, A., Biener, E., Ramanujan, K.V., Djiane, J., and Herman, B., J. Dairy Res., 2005, vol. 72, p. 9.

    Article  CAS  Google Scholar 

  114. 114.

    Hallworth, R., Currall, B., Nichols, M.G., Wu, X., and Zuo, J., Brain Res., 2006, vol. 1091, pp. 122–131.

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., and Mauro, J.M., Nat. Mater., 2003, vol. 2, pp. 630–638.

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Wargnier, R., Baranov, A., Maslov, V., Stsiapura, V., Sukhanova, A., Pluot, M., and Nabiev, I., Nano Lett., 2004, vol. 4, pp. 451–457.

    CAS  Article  Google Scholar 

  117. 117.

    Sukhanova, A., Baranov, A.V., Perova, T., Cohen, J.H.M., and Nabiev, I., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, pp. 2048–2052.

    CAS  Article  Google Scholar 

  118. 118.

    Sukhanova, A., Venteo, L., Cohen, J.H.M., Pluot, M., and Nabiev, I., Ann. Acad. Pharm. Franc., 2006, vol. 64, pp. 125–134.

    CAS  Google Scholar 

  119. 119.

    Sukhanova, A. and Nabiev, I., Expert. Opin. Med. Diagn., 2008, vol. 2, pp. 429–447.

    CAS  Article  Google Scholar 

  120. 120.

    Nabiev, I., Mitchell, S., Davies, A., Willyams, Y., Kelleher, D., Moore, R., Gin’ko, Y.K., Byrne, S., Rakovich, Y.P., Donegan, J.F., Sukhanova, A., Conroy, J., Cottell, D., Gaponik, N., Rogach, A., and Volkov, Y., Nano Lett., 2007, vol. 7, pp. 3452–3461.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Oleinikov.

Additional information

Original Russian Text © V.A. Oleinikov, 2011, published in Bioorganicheskaya Khimiya, 2011, Vol. 37, No. 2, pp. 171–189.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oleinikov, V.A. Fluorescent semiconductor nanocrystals (quantum dots) in protein biochips. Russ J Bioorg Chem 37, 151–167 (2011). https://doi.org/10.1134/S1068162011020117

Download citation

Keywords

  • proteomics
  • microchips
  • biochips
  • quantum dots
  • fluorescence
  • flow cytometry
  • microspectroscopy
  • diagnostics