Skip to main content
Log in

Peroxidase oxidation of lignin and its model compounds

  • Review Article
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The published information on the use of enzymes belonging to a large family of peroxidases of plant and fungal origin as the catalysts of lignin and its model compound oxidation by hydrogen peroxide are reviewed. The structures and the mechanism of the catalytic action of these enzymes are comparatively considered. The enzymes have similar structures; however, the enzymes of plant origin have higher stabilities and pH optima. It was concluded that further studies of the effect of the functional nature, polymolecular properties, and regularities of the redox conversions during the catalytic oxidation of plant lignins by plant peroxidases are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreeva, V.A., Ferment peroksidaza: uchastie v zashchitnom mekhanizme rastenii (Enzyme Peroxidase: Involvement in Defensive Mechanisms of Plants), Moscow, 1988.

  2. Gazaryan, I.G., Khushpul’yan, D.M., and Tishkov, V.I., Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.

    CAS  Google Scholar 

  3. Young, R.A. and Akhtar, M., Environmentally Friendly Technologies for Paper Industry, Canada: Wiley, 1998.

    Google Scholar 

  4. Have, R. and Teunissen, P.J., Chem. Rev., 2001, no. 101, pp. 3397–3413.

  5. Levit, M.N. and Shkrob, A.M., Bioorg. Khim., 1992, vol. 18, no. 3, pp. 309–345.

    CAS  PubMed  Google Scholar 

  6. Bekker, E.G., Isolation, Properties, and Major Consistent Patterns of Action of Lignolytic Enzymes (Laccases, Ligninases, and Mn-Peroxidases), Cand. Sci. (Chem.), Dissertation, Moscow, 1993.

  7. Bolobova, A.V., Askadskii, A.A., Kondratenko, V.I., and Rabinovich, M.L., Teoreticheskie osnovy biotekhnologii drevesnykh kompozitov (Theoretical Basics of Biotechnology of Woody Composites), Book II: Fermenty, modeli, protsessy (Enzymes, Models, and Processes), Moscow, 2002.

  8. Shimada, M. and Higuchi, L., in Wood and Cellulosic Chemistry, Hon, D.N.-S. and Shiraishi, N., Eds., New York: Mercek Dekker, 1991, pp. 525–591.

    Google Scholar 

  9. Strtel’skii, V.A., Beigel’man, A.V., and Chupka, E.I., Khim. Prir. Soedin., 1982, no. 1, pp. 109–112.

  10. Strel’skii, V.A., Peroxidase Oxidation of Lignin and Its Model Compounds, Cand. Sci. (Chem.) Dissertation, Leningrad, 1986.

  11. Hewson, W.D. and Dunford, H.B., J. Biol. Chem., 1976, vol. 251, no. 19, pp. 6036–6042.

    CAS  PubMed  Google Scholar 

  12. Thompson, D., Norbeck, K., Olsson, L., and Constantin-Teodosiu, D., J. Biol. Chem., 1989, vol. 264, no. 2, pp. 1016–1021.

    CAS  PubMed  Google Scholar 

  13. Banci, L., Bertini, I., Bini, T., et al., Biochemistry, 1993, vol. 32, no. 22, pp. 5825–5831.

    Article  CAS  PubMed  Google Scholar 

  14. Smith, A.T. and Veitch, N.C., Curr. Opin. Chem. Biol., 1998, vol. 2, pp. 269–278.

    Article  CAS  PubMed  Google Scholar 

  15. Kuila, D., Tien, M., Fee, J.A., and Ondrias, M.R., Biochemistry, 1985, vol. 24, pp. 3394–3397.

    Article  CAS  Google Scholar 

  16. Andersson, L.A., Renganathan, V., Chiu, A., et al., J. Biol. Chem., 1985, vol. 260, no. 10, pp. 6080–6087.

    CAS  PubMed  Google Scholar 

  17. Andersson, L.A., Renganathan, V., Loehr, T.M., et al., Biochemistry, 1987, vol. 26, no. 8, pp. 2258–2263.

    Article  CAS  PubMed  Google Scholar 

  18. Henricsen, A., Smith, A.T., and Gajhede, M., J. Biol. Chem., 1999, vol. 274, pp. 35005–35011.

    Article  Google Scholar 

  19. Montellano, O., Annu. Rev. Pharmacol. Toxicol., 1992, vol. 32, pp. 89–107.

    Article  Google Scholar 

  20. Rodrigues-Lopez, J.N., Gilabert, M.A., Tundela, J., and Thorneley, R.N., Biochemistry, 2000, vol. 39, pp. 13201–13209.

    Article  Google Scholar 

  21. Dunford, H.B. and Adeniran, A.J., Arch. Biochem. Biophys., 1986, vol. 251, pp. 536–542.

    Article  CAS  PubMed  Google Scholar 

  22. Van Haandel, M.J., Classens, M.M., and Van der Hount, N., Biochim. Biophys. Acta, 1999, vol. 1435, pp. 22–29.

    PubMed  Google Scholar 

  23. Schneegab, I., Hofrichter, M., Scheibner, K., and Fritsche, W., Appl. Microbiol. Biotechnol., 1997, vol. 48, pp. 602–605.

    Article  Google Scholar 

  24. Crestini, C., DAnnibale, A., Sermanni, G.G., and Saladino, R., Bioorg. Med. Chem., 2000, vol. 8, no. 2, pp. 433–438.

    Article  CAS  PubMed  Google Scholar 

  25. Gelpke, M.D.S., Youngs, H.L., and Gold, M.N., Eur. J. Biochem., 2000, vol. 267, pp. 7038–7054.

    Article  CAS  PubMed  Google Scholar 

  26. Bockle, B., Martinez, M.J., Guillen, F., and Martinez, A.T., Appl. Environ. Microbiol., 1999, vol. 65, no. 3, pp. 923–928.

    CAS  PubMed  Google Scholar 

  27. Marbach, I., Harel, E., and Mayer, A.M., Phytochemistry, 1985, vol. 24, pp. 2559–2561.

    Article  CAS  Google Scholar 

  28. Xu, F., J. Biol. Chem., 1997, vol. 272, no. 2, pp. 924–928.

    Article  CAS  PubMed  Google Scholar 

  29. Tien, M. and Kirk, T.K., Proc. Natl. Acad. Sci. USA, 1984, vol. 81, no. 8, pp. 2280–2284.

    Article  CAS  PubMed  Google Scholar 

  30. Kuila, D., Tien, M., Fee, J.A., and Ondrias, M.R., Biochemistry, 1985, vol. 24, no. 14, pp. 3394–3397.

    Article  CAS  Google Scholar 

  31. Gold, M.H., Wariishi, H., and Valli, K., ACS Symp. Ser., 1989, vol. 389, pp. 127–140.

    Article  CAS  Google Scholar 

  32. La Mar, G.N., Thanabal, V., and De Ropp, J.S., Biochemistry, 1989, vol. 28, no. 4, p. 1934.

    Google Scholar 

  33. Godfrey, B.J., Mayfield, M.B., Brown, J.A., and Gold, M.H., Gene, 1990, vol. 93, no. 1, pp. 119–124.

    Article  CAS  PubMed  Google Scholar 

  34. Renganathan, V. and Gold, M.H., Biochemistry, 1986, vol. 25, no. 7, pp. 1626–1631.

    Article  CAS  Google Scholar 

  35. Dure, L. and Cormier, M.J., J. Biol. Chem., 1964, vol. 239, pp. 2351–2359.

    CAS  PubMed  Google Scholar 

  36. Tien, M., Kirk, T., Bull, C., and Fee, J.A., J. Biol. Chem., 1986, vol. 261, no. 4, pp. 1687–1693.

    CAS  PubMed  Google Scholar 

  37. Glenn, J.K. and Gold, M.H., Arch. Biochem. Biophys., 1985, vol. 242, no. 2, pp. 329–341.

    Article  CAS  PubMed  Google Scholar 

  38. Kersten, P.J., Kalyanaraman, B., Hammel, K.E., Reinhammar, B., and Kirk, T.K., Biochem. J., 1990, vol. 268, no. 2, pp. 475–480.

    CAS  PubMed  Google Scholar 

  39. Schoemaker, H.E., Harvey, P.J., Bowen, R.M., and Palmer, J.M., FEBS Lett., 1985, vol. 183, no. 1, pp. 7–12.

    Article  CAS  Google Scholar 

  40. Band, L., Ciofi-Baffoni, S., and Tien, M., FEBS Lett., 1999, vol. 38, no. 10, pp. 3205–3210.

    Google Scholar 

  41. Kirk, T.K. and Farrel, R.L., Annu. Rev. Microbiol., 1987, pp. 125–131.

  42. Cardwell, E.S. and Steellink, C., Biochem. Biophys. Acta, 1969, pp. 105–109.

  43. Loung, M. and Steellink, C., Phytochemistry, 1973, vol. 12, pp. 2152–2157.

    Google Scholar 

  44. Khindaria, A., Grover, T.A., and Aust, S.D., Biochemistry, 1995, vol. 34, pp. 6020–6025.

    Article  CAS  PubMed  Google Scholar 

  45. Koduri, R.S. and Tien, M., J. Biol. Chem., 1995, vol. 270, no. 38, pp. 22254–22258.

    Article  CAS  PubMed  Google Scholar 

  46. Laszlo, J.A. and Compton, D.L., J. Mol. Cat. B, 2002, vol. 18, pp. 109–120.

    Article  CAS  Google Scholar 

  47. Ward, G., Hadar, Y., and Dosoretz, C.G., Enzyme Microb. Technol., 2001, vol. 29, no. 1, pp. 34–41.

    Article  CAS  PubMed  Google Scholar 

  48. Outgenoeg, G., Dirksen, E., Ingemann, S., and Hilhorst, R., J. Biol. Chem., 2002, vol. 277, no. 24, pp. 21332–21340.

    Article  Google Scholar 

  49. Tompson, D., Norbeck, K., Olsson, L., and Constantin-Teodosiu, D., J. Biol. Chem., 1989, vol. 264, no. 2, pp. 1016–1021.

    Google Scholar 

  50. Holmgren, A., Biochemical Control Aspects in Lignin Polymerization, Doctoral Thesis, Stockholm: Royal Institute of Technology, 2008.

    Google Scholar 

  51. Kirk, T.K., Biochemistry and Genetics of Cellulose Degradation, Academic Press, 1988, pp. 315–332.

  52. Hwang, R.H., Kennedy, J.F., and Melo, E.H.M., Carbohydrate Polymers, 1989, vol. 10, no. 1, pp. 15–30.

    Article  CAS  Google Scholar 

  53. Kurek, B., Monties, B., and Odier, E., Enzyme Microb. Technol., 1990, vol. 12, no. 10, pp. 771–777.

    Article  CAS  Google Scholar 

  54. Hammel, K.E. and Moen, M.A., Enzyme Microb. Technol., 1991, vol. 13, no. 1, pp. 15–18.

    Article  CAS  Google Scholar 

  55. Howes, B.D., Feis, A., Raimondi, L., and Smulevich, G., J. Biol. Chem., 2001, vol. 276, no. 44, pp. 40704–40711.

    Article  CAS  PubMed  Google Scholar 

  56. Klapper, M. and Hackett, D.P., J. Biol. Chem., 1963, vol. 238, no. 11, pp. 3736–3742.

    CAS  PubMed  Google Scholar 

  57. Ugarova, N.N., Lebedeva, O.V., and Savitskii, A.P., Peroksidaznyi kataliz i ego primenenie (Peroxidase Catalysis and Its Application), Moscow, 1981.

  58. Neilsen, K.L., Indiani, G., Henriksen, A., et al., Biochemistry, 2001, vol. 40, pp. 11013–11021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eisenstadt.

Additional information

Original Russian Text © M.A. Eisenstadt, K.G. Bogolitsyn, 2010, published in Khimiya Rastitel’nogo Syr’ya, 2009, No. 2, pp. 5–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenstadt, M.A., Bogolitsyn, K.G. Peroxidase oxidation of lignin and its model compounds. Russ J Bioorg Chem 36, 802–815 (2010). https://doi.org/10.1134/S1068162010070034

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162010070034

Keywords

Navigation