Skip to main content

An RNA sequence determines the speed of its cleavage by artificial ribonucleases

Abstract

Phosphodiester bonds in RNA situated between similar nucleotides but in different sequences (context) were cleaved under the action of artificial and natural ribonucleases with different speeds, and the reason for this phenomenon has not yet been fully revealed. In this study, the influence of one-nucleotide substitution on the sensitivity to cleavage of the phosphodiester bonds in linear and structured RNA with homologous sequences is studied for the first time. It is indicated that the introduction of one-nucleotide substitution in the RNA sequence significantly (up to 10 times) changes the speed of the cleavage of the bonds that are separated from the substitution point not only by 1–3, but also 6–8 nucleotides, by artificial ribonucleases. The observed regularities may be explained by the fact that the introduction of a one-nucleotide substitution significantly changes the stacking interactions and the net of hydrogen bonds in the RNA molecule. The applied value of this study consists of the ability of using low-molecular artificial ribonucleases with the aim of choosing the region of the binding of the oligonucleotide in the construction of a conjugate for the site-directed cutting of RNA, because the choice of a phosphodiester bond (motif) easily subjected to cleavage significantly determines the efficacy of artificial ribonucleases of directed action.

This is a preview of subscription content, access via your institution.

Abbreviations

Pyr:

pyrimidine

DTT:

ditiotreit

SDS:

sodium dodecylsulphate

Ade:

adenine

Prdir/rev :

primer direct/reverse

References

  1. Kaukinen, U., Lyytikainen, S., Mikkola, S., and Lonnberg, H., Nucleic Acid Res., 2002, vol. 30, pp. 468–474.

    Article  CAS  PubMed  Google Scholar 

  2. Soukup, G.A. and Breaker, R.R., RNA, 1999, vol. 5, pp. 1308–1325.

    Article  CAS  PubMed  Google Scholar 

  3. Li, Y. and Breaker, R.R., J. Am. Chem. Soc., 1999, vol. 121, pp. 5364–5372.

    Article  CAS  Google Scholar 

  4. Oivanen, M., Kuusela, S., and Lonnberg, H., Chem. Rev., 1998, vol. 98, pp. 961–990.

    Article  CAS  PubMed  Google Scholar 

  5. Kierzek, R., Nucleic Acid Res., 1992, vol. 20, pp. 5073–5077.

    Article  CAS  PubMed  Google Scholar 

  6. Bibillo, A., Ziomek, K., Figlerowicz, M., and Kierzek, R., Acta Biochim. Pol., 1999, vol. 46, pp. 145–153.

    CAS  PubMed  Google Scholar 

  7. Bibillo, A., Figlerowicz, M., and Kierzek, R., Nucleic Acid Res., 1999, vol. 27, pp. 3931–3937.

    Article  CAS  PubMed  Google Scholar 

  8. Dock-Bregeon, A.C. and Moras, D., Cold Spring Harb. Symp. Quant. Biol., 1987, vol. 52, pp. 113–121.

    CAS  PubMed  Google Scholar 

  9. Konevets, D.A., Zenkova, M.A., Sil’nikov, V.N., and Vlasov, V.V., Dokl. Akad. Nauk, 1998, vol. 360, pp. 554–558.

    CAS  PubMed  Google Scholar 

  10. Vlasov, V.V., Sil’nikov, V.N., and Zenkova, M.A., Mol. Biol. (Moscow), 1998, vol. 32, pp. 62–70.

    CAS  Google Scholar 

  11. Vlassov, V.V., Zuber, G., Felden, B., Behr, J.P., and Giege, R., Nucleic Acid Res., 1995, vol. 23, pp. 3161–3167.

    Article  CAS  PubMed  Google Scholar 

  12. Kaukinen, U., Venalainen, T., Lonnberg, H., and Perakyla, M., Org. Biomol. Chem., 2003, vol. 1, pp. 2439–2447.

    Article  CAS  PubMed  Google Scholar 

  13. Kierzek, R., Nucleic Acid Res., 1992, vol. 20, pp. 5079–5084.

    Article  CAS  PubMed  Google Scholar 

  14. Kaukinen, U., Lonnberg, H., and Perakyla, M., Org. Biomol. Chem., 2004, vol. 2, pp. 66–73.

    Article  CAS  PubMed  Google Scholar 

  15. Burkard, M.E., Kierzek, R., and Turner, D.H., J. Mol. Biol., 1999, vol. 290, pp. 967–982.

    Article  CAS  PubMed  Google Scholar 

  16. Zenkova, M., Beloglazova, N., Sil’nikov, V., Vlassov, V., and Giege, R., Methods Enzymol., 2001, vol. 341, pp. 468–490.

    Article  CAS  PubMed  Google Scholar 

  17. Zuker, M., Nucleic Acid Res., 2003, vol. 31, pp. 3406–3415.

    Article  CAS  PubMed  Google Scholar 

  18. Zenkova, M.A., Vlassov, A.V., Konevetz, D.A., Sil’nikov, V.N., Giege, R., and Vlassov, V.V., Bioorg. Khim., 2000, vol. 26, pp. 679–685 [Russ. J. Bioorg. Chem. (Engl. Transl.), 2000, vol. 26, pp. 610–615].

    CAS  PubMed  Google Scholar 

  19. Konevetz, D.A., Beck, I.E., Beloglazova, N.G., Sulimenkov, I.V., Sil’nikov, V.N., Zenkova, M.A., Shishkin, G.V., and Vlassov, V.V., Tetrahedron, 1999, vol. 55, pp. 503–512.

    Article  CAS  Google Scholar 

  20. Maglott, E.J., Deo, S.S., Przykorska, A., and Glick, G.D., Biochemistry, 1998, vol. 37, pp. 16349–16359.

    Article  CAS  PubMed  Google Scholar 

  21. Petyuk, V.A., Zenkova, M.A., Giege, R., and Vlassov, V.V., FEBS Lett., 1999, vol. 444, pp. 217–221.

    Article  CAS  PubMed  Google Scholar 

  22. Helm, M., Brule, H., Degoul, F., Cepanec, C., Leroux, J.P., Giege, R., and Florentz, C., Nucleic Acid Res., 1998, vol. 26, pp. 1636–1643.

    Article  CAS  PubMed  Google Scholar 

  23. Serebrov, V., Vasilenko, K.S., Kholod, N.S., and Kiselev, L.L., Mol. Biol. (Moscow), 1997, vol. 31, pp. 894–900.

    Google Scholar 

  24. Nagaswamy, U., Gao, X., Martinis, S.A., and Fox, G.E., Nucleic Acid Res., 2001, vol. 29, pp. 5129–5139.

    Article  CAS  PubMed  Google Scholar 

  25. Jucker, F.M. and Pardi, A., RNA, 1995, vol. 1, pp. 219–222.

    CAS  PubMed  Google Scholar 

  26. Freier, S.M., Hill, K.O., Dewey, T.G., Marky, L.A., Breslauer, K.J., and Turner, D.H., Biochemistry, 1981, vol. 20, pp. 1419–1426.

    Article  CAS  PubMed  Google Scholar 

  27. Giege, R., Puglisi, J.D., and Florentz, C., Prog. Nucleic Acid. Res. Mol. Biol., 1993, vol. 45, pp. 129–206.

    Article  CAS  PubMed  Google Scholar 

  28. Downs, W.D. and Cech, T.R., Biochemistry, 1990, vol. 29, pp. 5605–5613.

    Article  CAS  PubMed  Google Scholar 

  29. Branch, A.D., Benenfeld, B.J., and Robertson, H.D., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 6590–6594.

    Article  CAS  PubMed  Google Scholar 

  30. Atmadja, J., Brimacombe, R., Blocker, H., and Frank, R., Nucleic Acid Res., 1985, vol. 13, pp. 6919–6936.

    Article  CAS  PubMed  Google Scholar 

  31. Bergstrom, D.E. and Leonard, N.J., Biochemistry, 1972, vol. 11, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Favre, A., Yaniv, M., and Michelson, A.M., Biochem. Biophys. Res. Commun., 1969, vol. 37, pp. 266–271.

    Article  CAS  PubMed  Google Scholar 

  33. Behlen, L.S., Sampson, J.R., and Uhlenbeck, O.C., Nucleic Acid Res., 1992, vol. 20, pp. 4055–4059.

    Article  CAS  PubMed  Google Scholar 

  34. Jovine, L., Djordjevic, S., and Rhodes, D., J. Mol. Biol., 2000, vol. 301, pp. 401–414.

    Article  CAS  PubMed  Google Scholar 

  35. Norberg, J. and Nilsson, L., J. Am. Chem. Soc., 1995, vol. 117, pp. 10832–10840.

    Article  CAS  Google Scholar 

  36. Inners, L.D. and Felsenfeld, G., J. Mol. Biol., 1970, vol. 50, pp. 373–389.

    Article  CAS  PubMed  Google Scholar 

  37. Hosaka, H., Sakabe, I., Sakamoto, K., Niimi, T., Yokoyama, S., and Takaku, H., Biochim. Biophys. Acta, 1994, vol. 1218, pp. 351–356.

    CAS  PubMed  Google Scholar 

  38. Cannistraro, V.J., Subbarao, M.N., and Kennell, D., J. Mol. Biol., 1986, vol. 192, pp. 257–274.

    Article  CAS  PubMed  Google Scholar 

  39. Filimonov, V.V. and Privalov, P.L., J. Mol. Biol., 1978, vol. 122, pp. 465–470.

    Article  CAS  PubMed  Google Scholar 

  40. Suurkuusk, J., Alvarez, J., Freire, E., and Biltonen, R., Biopolymers, 1977, vol. 16, pp. 2641–2652.

    Article  CAS  PubMed  Google Scholar 

  41. Ezra, F.S., Lee, C.H., Kondo, N.S., Danyluk, S.S., and Sarma, R.H., Biochemistry, 1977, vol. 16, pp. 1977–1987.

    Article  CAS  PubMed  Google Scholar 

  42. Bibillo, A., Figlerowicz, M., Ziomek, K., and Kierzek, R., Nucleosides Nucleotides Nucleic Acids, 2000, vol. 19, pp. 977–994.

    Article  CAS  PubMed  Google Scholar 

  43. Milligan, J.F. and Uhlenbeck, O.C., Methods Enzymol., 1989, vol. 180, pp. 51–62.

    Article  CAS  PubMed  Google Scholar 

  44. Beloglazova, N.G., Sil’nikov, V.N., Zenkova, M.A., and Vlassov, V.V., FEBS Lett., 2000, vol. 481, pp. 277–280.

    Article  CAS  PubMed  Google Scholar 

  45. Ting, R., Thomas, J.M., Lermer, L., and Perrin, D.M., Nucleic Acid Res., 2004, vol. 32, pp. 6660–6672.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zenkova.

Additional information

Original Russian Text © N.V. Tamkovich, A.N. Zenkov, V.V. Vlasov, M.A. Zenkova, 2010, published in Bioorganicheskaya Khimiya, 2010, Vol. 36, No. 2, pp. 223–235

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tamkovich, N.V., Zenkov, A.N., Vlasov, V.V. et al. An RNA sequence determines the speed of its cleavage by artificial ribonucleases. Russ J Bioorg Chem 36, 207–218 (2010). https://doi.org/10.1134/S106816201002010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816201002010X

Key words

  • RNA
  • cleavage
  • artificial ribonucleases
  • selectivity to an RNA sequence