Skip to main content

The use of RNA interference for the metabolic engineering of plants (Review)

On 50-year anniversary of the Institute of Bioorganic Chemistry

Abstract

The metabolic engineering of plants is aimed at the realization of new biochemical reactions by transgenic cells. These reactions are determined by enzymes encoded by foreign or self-modified genes. Plants are considered to be the most interesting objects for metabolic engineering. Although they are characterized by the same pathways for the synthesis of basic biological compounds, plants differ by the astonishing diversity of their products: sugars, aromatic compounds, fatty acids, steroid compounds, and other biologically active substances. RNA interference aimed at modifying metabolic pathways is a powerful tool that allows for the obtainment of plants with new valuable properties. The present review discusses the main tendencies for research development directed toward the obtainment of transgenic plants with altered metabolism.

This is a preview of subscription content, access via your institution.

Abbreviations

RNAi:

RNA interference

dsRNA:

doublestranded RNA

siRNA:

small interfering RNA

asRNA:

antisense RNA

References

  1. Hammond, S.M., Caudy, A.A., and Hannon, G.J., Nat. Rev. Genet., 2001, vol. 2, pp. 110–119.

    Article  PubMed  CAS  Google Scholar 

  2. Ecker, J.R. and Davis, R.W., Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 5372–5376.

    Article  PubMed  CAS  Google Scholar 

  3. Zinkevich, V.E., Bogdarina, I.G., Rukavtsova, E.B., M“rkhova, M.I., Bur’yanov, Ya.I., and Baev, A.A., Dokl. Akad. Nauk SSSR, 1988, vol. 300, pp. 727–730.

    CAS  Google Scholar 

  4. Hamilton, A.J. and Baulcombe, D.C., Science, 1999, vol. 286, pp. 950–952.

    Article  PubMed  CAS  Google Scholar 

  5. Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., Cell, 2000, vol. 101, pp. 25–33.

    Article  PubMed  CAS  Google Scholar 

  6. Zilberman, D., Cao, X., and Jacobsen, S.E., Science, 2003, vol. 299, pp. 716–719.

    Article  PubMed  CAS  Google Scholar 

  7. Hutvagner, G. and Simard, M.J., Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 22–32.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, N.A., Singh, S.P., Wang, M.-B., Stoutjesdijk, P.A., Green, A.G., and Waterhouse, P.M., Nature, 2000, vol. 407, pp. 319–320.

    Article  PubMed  CAS  Google Scholar 

  9. The Arabidopsis Genome Initiative, Nature, 2000, vol. 408, pp. 796–815.

    Article  Google Scholar 

  10. Wang, X., Shi, X., Hao, B., Ge, S., and Luo, J., New Phytol., 2005, vol. 165, pp. 937–946.

    Article  PubMed  CAS  Google Scholar 

  11. Waterhouse, P.M., Graham, M.W., and Wang, M.B., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13959–13964.

    Article  PubMed  CAS  Google Scholar 

  12. Wesley, S.V., Helliwell, C., Smith, N.A., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., and Waterhouse, P.M., Plant J., 2001, vol. 27, pp. 581–590.

    Article  PubMed  CAS  Google Scholar 

  13. http://www.invitrogen.com

  14. http://www.pi.csiro.au/rnai/vectors.htm

  15. Wielopolska, A., Townley, H., Moore, I., Waterhouse, P., and Helliwell, C., Plant Biotechnol. J, 2005, vol. 3, pp. 583–590.

    Article  PubMed  CAS  Google Scholar 

  16. Masclaux, F.G., Charpenteau, M., Takahashi, T., Pont-Lezica, R., and Galaud, J.-P., Biochem. Biophys. Res. Commun., 2004, vol. 321, pp. 364–369.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Q., Singh, S.P., and Green, A.G., Plant Physiol., 2002, vol. 129, pp. 1732–1743.

    Article  PubMed  CAS  Google Scholar 

  18. Townsend, B.J., Poole, A., Blake, C.J., and Llewellyn, D.J., Plant Physiol., 2005, vol. 138, pp. 516–528.

    Article  PubMed  CAS  Google Scholar 

  19. Sunilkumar, G., Campbell, L.M., Puckhaber, L., Stipanovic, R.D., and Rathore, K.S., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 18054–18059.

    Article  PubMed  CAS  Google Scholar 

  20. Schwall, G.P., Safford, R., Westcott, R.J., Jeffcoat, R., Tayal, A., Shi, Y.C., Gidley, M.J., and Jobling, S.A., Nat. Biotechnol., 2000, vol. 18, pp. 551–554.

    Article  PubMed  CAS  Google Scholar 

  21. Garwood, D.L., Shannon, J.C., and Creech, R.G., Cereal Chem., 1976, vol. 53, pp. 355–364.

    CAS  Google Scholar 

  22. Blauth, S.L., Yao, Y., Klucinec, J.D.., Shannon, J.C., Thompson, D.B., and Guiltinan, M.J., Plant Physiol., 2001, vol. 125, pp. 1396–1405.

    Article  PubMed  CAS  Google Scholar 

  23. Blauth, S.L., Kim, K.-N., Klucinec, J., Shannon, J.C., Thompson, D., and Guiltinan, M., Plant. Mol. Biol., 2002, vol. 48, pp. 287–297.

    Article  PubMed  CAS  Google Scholar 

  24. Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S., and Morell, M., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 3546–3551.

    Article  PubMed  CAS  Google Scholar 

  25. Houmard, N.M., Mainville, J.L., Bonin, C.P., Huang, S., Luethy, M.H., and Malvar, T.M., Plant Biotechnol. J., 2007, vol. 5, pp. 605–614.

    Article  PubMed  CAS  Google Scholar 

  26. Frizzi, A., Huang, S., Gilbertson, L.A., Armstrong, T.A., Luethy, M.H., and Malvar, T.M., Plant Biotechnol. J., 2008, vol. 6, pp. 13–21.

    PubMed  CAS  Google Scholar 

  27. Heilersig, H.J., Loonen, A., Bergervoet, M., Wolters, A.M., and Visser, R.G., Plant. Mol. Biol., 2006, vol. 60, pp. 647–662.

    Article  PubMed  CAS  Google Scholar 

  28. Otani, M., Hamada, T., Katayama, K., Kitahara, K., Kim, S.H., Takahata, Y., Suganuma, T., and Shimada, T., Plant Cell Rep., 2007, vol. 26, pp. 1801–1807.

    Article  PubMed  CAS  Google Scholar 

  29. Andersson, M., Melander, M., Pojmark, P., Larsson, H., Bulow, L., and Hofvander, P., J. Biotechnol., 2006, vol. 123, pp. 137–148.

    Article  PubMed  CAS  Google Scholar 

  30. Shimada, T., Otani, M., Hamada, T., and Kim, S.H., Plant Biotechnol., 2006, vol. 23, pp. 85–90.

    CAS  Google Scholar 

  31. Kitahara, K., Hamasuna, K., Nozuma, K., Otani, M., Hamada, T., Shimada, T., Fujita, K., and Suganuma, T., Carbohydr. Polymers, 2007, vol. 69, pp. 233–240.

    Article  CAS  Google Scholar 

  32. Jorgensen, K., Bak, S., Busk, P.K., Sorensen, C., Olsen, C.E., Puonti-Kaerlas, J., and Moller, B.L., Plant Physiol., 2005, vol. 139, pp. 363–374.

    Article  PubMed  CAS  Google Scholar 

  33. Kalamaki, M.S., Harpster, M.H., Palys, J.M., Labavitch, J.M., Reid, D.S., and Brummell, D.A., J. Agric. Food Chem., 2003, vol. 51, pp. 7456–7464.

    Article  PubMed  CAS  Google Scholar 

  34. Davuluri, G.R., van Tuinen, A., Mustilli, A.C., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Pennings, H.M., and Bowler, C., Plant J., 2004, vol. 40, pp. 344–354.

    Article  PubMed  CAS  Google Scholar 

  35. Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C., and Giovannoni, J., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 9897–9902.

    Article  PubMed  CAS  Google Scholar 

  36. Van der Rest, B., Danoun, S., Boudet, A.-M., and Rochange, S.F., J. Exp. Bot., 2006, vol. 57, pp. 1399–1411.

    Article  PubMed  CAS  Google Scholar 

  37. Schijlen, E.G.W.M., de Vos, C.H.R., Martens, S., Martens, S., Jonker, H.H., Rosin, F.M., Molthoff, J.W., Tikunov, Y.M., Angenent, G.C., van Tunen, A.J., and Bovy, A.G., Plant Physiol., 2007, vol. 144, pp. 1520–1530.

    Article  PubMed  CAS  Google Scholar 

  38. Gilissen, L.J., Bolhaar, S.T., Matos, C.I., Rouwendal, G.J., Boone, M.J., Krens, F.A., Zuidmeer, L., van Leeuwen, A., Akkerdaas, J., Hoffmann-Sommergruber, K., Knulst, A.C., Bosch, D., van de Weg, W.E., and van Ree, R., J. Allergy Clin. Immunol., 2005, vol. 115, pp. 364–369.

    Article  PubMed  CAS  Google Scholar 

  39. Allen, R.S., Millgate, A.G., Chitty, J.A., Thisleton, J., Miller, J.A., Fist, A.J., Gerlach, W.L., and Larkin, P.J., Nat. Biotechnol., 2004, vol. 22, pp. 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  40. Frick, S., Chitty, J.A., Kramell, R., Schmidt, J., Allen, R.S., Larkin, P.J., and Kutchan, T.M., Transgenic Res., 2004, vol. 13, pp. 607–613.

    Article  PubMed  CAS  Google Scholar 

  41. Allen, R.S., Miller, J.A.C., Chitty, J.A., Fist, A.J., Gerlach, W.L., and Larkin, P.J., Plant Biotechnol. J., 2008, vol. 6, pp. 22–30.

    PubMed  CAS  Google Scholar 

  42. Siminszky, B., Gavilano, L., Bowen, S.W., and Dewey, R.E., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 14919–14924.

    Article  PubMed  CAS  Google Scholar 

  43. Gavilano, L.B., Coleman, N.P., Burnley, L.E., Bowman, M.L., Kalengamaliro, N.E., Hayes, A., Bush, L., and Siminszky, B., J. Agric Food Chem., 2006, vol. 54, pp. 9071–9078.

    Article  PubMed  CAS  Google Scholar 

  44. Lewis, R.S., Jack, A.M., Morris, J.W., Robert, V.J., Gavilano, L.B., Siminszky, B., Bush, L.P., Hayes, A.J., and Dewey, R.E., Plant Biotechnol. J., 2008, vol. 6, pp. 346–354.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, P., Liang, Z., Zeng, J., Li, W., Sun, X., Miao, Z., and Tang, K., J. Biosci., 2008, vol. 33, pp. 177–184.

    Article  PubMed  Google Scholar 

  46. Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N., and Sano, H., Nature, 2003, vol. 423, p. 823.

    Article  PubMed  CAS  Google Scholar 

  47. Ogita, S., Uefuji, H., Morimoto, M., and Sano, H., Plant. Mol. Biol., 2004, vol. 54, pp. 931–941.

    Article  PubMed  CAS  Google Scholar 

  48. Ashihara, H., Zheng, X.-Q., Katahira, R., Morimoto, M., Ogita, S., and Sano, H., Phytochemistry, 2006, vol. 67, pp. 882–886.

    Article  PubMed  CAS  Google Scholar 

  49. Meyer, P., Heidmann, I., Forkmann, G., and Saedler, H., Nature, 1987, vol. 330, pp. 677–678.

    Article  PubMed  CAS  Google Scholar 

  50. van der Krol, A.R., Mur, L.A., de Lange, P., Mol, J.N., and Stuitje, A.R., Plant. Mol. Biol., 1990, vol. 14, pp. 457–466.

    Article  PubMed  Google Scholar 

  51. Courtney-Gutterson, N., Napoli, C., Lemieux, C., Morgan, A., Firoozabady, E., and Robinson, K.E., BioTechnology, 1994, vol. 12, pp. 268–271.

    Article  PubMed  CAS  Google Scholar 

  52. Nakatsuka, T., Pitaksutheepong, C., Yamamura, S., and Nishihara, M., Plant Biotechnol. Rep., 2007, vol. 1, pp. 251–257.

    Article  Google Scholar 

  53. Nishihara, M., Takashi, N., and Saburo, Y., FEBS Lett., 2005, vol. 579, pp. 6074–6078.

    Article  PubMed  CAS  Google Scholar 

  54. Poroiko, V.A., Rukavtsova, E.B., Orlova, I.V., and Bur’yanov, Ya.I., Genetika, 2000, vol. 36, pp. 1200–1205.

    PubMed  CAS  Google Scholar 

  55. Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., Brugliera, F., Holton, T.A., Karan, M., Nakamura, N., Yonekura-Sakakibara, K., Togami, J., Pigeaire, A., Tao, G.-Q., Nehra, N.S., Lu, C-Y., Dyson, B.K., Tsuda, S., Ashikari, T., Kusumi, T., Mason, J.G., and Tanaka, Y., Plant Cell Physiol., 2007, vol. 48, pp. 1589–1600.

    Article  PubMed  CAS  Google Scholar 

  56. Zhong, R., Morrison, W.H.., Himmelsbach, D.S., Poole, F.L.., and Ye, Z.-H., Plant Physiol., 2000, vol. 124, pp. 563–577.

    Article  PubMed  CAS  Google Scholar 

  57. Bhuiyan, N.H., Selvaraj, G., Wei, Y., and King, J., J. Exp. Bot., 2009, vol. 60, pp. 509–521.

    Article  PubMed  Google Scholar 

  58. Boerjan, W., Ralph, J., and Baucher, M., Annu. Rev. Plant Biol., 2003, vol. 54, pp. 519–546.

    Article  PubMed  CAS  Google Scholar 

  59. Baucher, M., Monties, B., van Montagu, M., and Boerjan, W., Crit. Rev. Plant Sci., 1998, vol. 17, pp. 125–197.

    Article  CAS  Google Scholar 

  60. Halpin, C., Knight, M.E., Foxon, G.A., Campbell, M.M., Boudet, A.M., Boon, J.J., Chabbert, B., Tollier, M., and Schuch, W., Plant J., 1994, vol. 6, pp. 339–350.

    Article  CAS  Google Scholar 

  61. Piquemal, J., Lapierre, C., Myton, K., O’Connell, A., Schuch, W., Grima-Pettenati, J., and Boudet, A.-M., Plant J., 1998, vol. 13, pp. 71–83.

    Article  CAS  Google Scholar 

  62. Chabannes, M., Barakate, A., Lapierre, C., Marita, J.M., Ralph, J., Pean, M., Danoun, S., Halpin, C., Grima-Pettenati, J., and Boudet, A.M., Plant J., 2001a, vol. 28, pp. 257–270.

    Article  PubMed  CAS  Google Scholar 

  63. Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J.-P., and Boudet, A.-M., Plant J., 2001b, vol. 28, pp. 271–282.

    Article  PubMed  CAS  Google Scholar 

  64. Pincon, G., Chabannes, M., Lapierre, C., Pollet, B., Ruel, K., Joseleau, J.-P., Boudet, A.M., and Legrand, M., Plant Physiol., 2001, vol. 126, pp. 145–155.

    Article  PubMed  CAS  Google Scholar 

  65. O’Connell, A., Holt, K., Piquemal, J., Grima-Pettenati, J., Boudet, A., Pollet, B., Lapierre, C., Petit-Conil, M., Schuch, W., and Halpin, C., Transgenic Res., 2002, vol. 11, pp. 495–503.

    Article  PubMed  Google Scholar 

  66. Hibino, T., Takabe, K., Kawazu, T., Shibata, D., and Higuchi, T., Biosci. Biotechnol. Biochem., 1995, vol. 59, pp. 929–931.

    Article  CAS  Google Scholar 

  67. Abbott, J.C., Barakate, A., Pincon, G., Legrand, M., Lapierre, C., Mila, I., Schuch, W., and Halpin, C., Plant Physiol., 2002, vol. 128, pp. 844–853.

    Article  PubMed  CAS  Google Scholar 

  68. Damiani, I., Morreel, K., Danoun, S., Goeminne, G., Yahiaoui, N., Marque, C., Kopka, J., Messens, E., Goffner, D., Boerjan, W., Boudet, A.M., and Rochange, S., Plant. Mol. Biol., 2005, vol. 59, pp. 753–769.

    Article  PubMed  CAS  Google Scholar 

  69. Kajita, S., Katayama, Y., and Omori, S., Plant Cell Physiol., 1996, vol. 37, pp. 957–965.

    PubMed  CAS  Google Scholar 

  70. Kajita, S., Hishiyama, S., Tomimura, Y., Katayama, Y., and Omori, S., Plant Physiol., 1997, vol. 114, pp. 871–879.

    PubMed  CAS  Google Scholar 

  71. Ni, W., Paiva, N.L., and Dixon, R.A., Transgenic Res., 1994, vol. 3, pp. 120–126.

    Article  CAS  Google Scholar 

  72. Baucher, M., Chabbert, B., Pilate, G., van Doorsselaere, J., Tollier, M.-T., Petit-Conil, M., Cornu, D., Monties, B., van Montagu, M., Inze, D., Jouanin, L., and Boerjan, W., Plant Physiol., 1996, vol. 112, pp. 1479–1490.

    PubMed  CAS  Google Scholar 

  73. Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Leple, J.-C., Boerjan, W., Ferret, V., de Nadai, V., and Jouanin, L., Plant Physiol., 1999, vol. 119, pp. 153–163.

    Article  PubMed  CAS  Google Scholar 

  74. Jouanin, L., Goujon, T., de Nadai, V., Martin, M.-T., Mila, I., Vallet, C., Pollet, B., Yoshinaga, A., Chabbert, B., Petit-Conil, M., and Lapierre, C., Plant Physiol., 2000, vol. 123, pp. 1363–1373.

    Article  PubMed  CAS  Google Scholar 

  75. Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leple, J.C., Pollet, B., Mila, I., Webster, E.A., Marstorp, H.G., Hopkins, D.W., Jouanin, L., Boerjan, W., Schuch, W., Kornu, D., and Halpin, C., Nat. Biotechnol., 2002, vol. 20, pp. 607–612.

    Article  PubMed  CAS  Google Scholar 

  76. Higuchi, T., Ito, T., Umezawa, T., Hibino, T., and Shibata, D., J. Biotechnol., 1994, vol. 37, pp. 151–158.

    Article  CAS  Google Scholar 

  77. Tsai, C.J., Popko, J.L., Mielke, M.R., Hu, W.J., Podila, G.K., and Chiang, V.L., Plant Physiol., 1998, vol. 117, pp. 101–112.

    Article  PubMed  CAS  Google Scholar 

  78. Hu, W.J., Harding, S.A., Lung, J., Popko, J., Ralph, J., Stokke, D.D., Tsai, C.J., and Chiang, V.L., Nat. Biotechnol., 1999, vol. 17, pp. 808–812.

    Article  PubMed  CAS  Google Scholar 

  79. Leple, J.C., Dauwe, R., Morreel, K., Storme, V., Lapierrre, V., Naumann, A., Kang, K.Y., et al., Plant Cell, 2007, vol. 19, pp. 3669–3691.

    Article  PubMed  CAS  Google Scholar 

  80. Coleman, H.D., Park, J.Y., Nair, R., Chapple, C., and Mansfield, S.D., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 4501–4506.

    Article  PubMed  Google Scholar 

  81. Hjalten, J., Lindau, A., Wennstrom, A., Blomberg, P., Witzell, J., Hurry, V., and Ericson, L., Basic Appl. Ecol., 2006, vol. 8, pp. 434–443.

    Article  Google Scholar 

  82. Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.-M., and Goffner, D., Plant Physiol., 2002, vol. 129, pp. 145–155.

    Article  PubMed  CAS  Google Scholar 

  83. Driouich, A., Laine, A.C., Vian, B., and Faye, L., Plant J., 1992, vol. 2, pp. 13–24.

    Article  CAS  Google Scholar 

  84. Bao, W., O’Malley, D.M., Whetten, R., and Sederoff, R.R., Science, 1993, vol. 260, pp. 636–638.

    Article  Google Scholar 

  85. Wadenback, J., von Arnold, S., Egertsdotter, U., Walter, M.H., Grima-Pettenati, J., Goffner, D., Gellerstedt, G., Gullion, T., and Clapham, D., Transgenic Res., 2008, vol. 17, pp. 379–392.

    Article  PubMed  CAS  Google Scholar 

  86. Wagner, A., Donaldson, L., Kim, H., Phillips, L., Flint, H., Steward, D., Torr, K., Koch, G., Schmitt, U., and Ralph, J., Plant Physiol., 2009, vol. 149, pp. 370–383.

    Article  PubMed  CAS  Google Scholar 

  87. Nicholson, R.L. and Hammerschmidt, R., Annu. Rev. Phytopathol., 1992, vol. 30, pp. 369–389.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Rukavtsova.

Additional information

Original Russian Text © E.B. Rukavtsova, V.V. Alekseeva, Ya.I. Buryanov, 2010, published in Bioorganicheskaya Khimiya, 2010, Vol. 36, No. 2, pp. 159–169.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rukavtsova, E.B., Alekseeva, V.V. & Buryanov, Y.I. The use of RNA interference for the metabolic engineering of plants (Review). Russ J Bioorg Chem 36, 146–156 (2010). https://doi.org/10.1134/S1068162010020020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162010020020

Key words

  • metabolic engineering
  • transgenic plants
  • RNA interference