New polypeptide components from the Heteractis crispa sea anemone with analgesic activity

  • S. A. Kozlov
  • Ya A. Andreev
  • A. N. Murashev
  • D. I. Skobtsov
  • I. A. D’yachenko
  • E. V. Grishin
Experimental Article


Two new polypeptide components which exhibited an analgesic effect in experiments on mice were isolated from the Heteractis crispa sea tropical anemone by the combination of chromatographic methods. The APHC2 and APHC3 new polypeptides consisted of 56 amino acid residues and contained six cysteine residues. Their complete amino acid sequence was determined by the methods of Edman sequencing, mass spectrometry, and peptide mapping. An analysis of the primary structure of the new peptides allowed for their attribution to a large group of trypsin inhibitors of the Kunitz type.

An interesting biological function of the new polypeptides was their analgesic effect on mammals, which is possibly realized via the modulation of the activity of the TRPV1 receptor and was not associated with the residual inhibiting activity towards trypsin and chymotrypsin. The analgesic activity of the APHC3 polypeptide was measured on the hot plate model of acute pain and was significantly higher than that of APHC2. Methods of preparation of the recombinant analogues were created for both polypeptides.

Key words

the Heteractis crispa sea anemone polypeptide inhibitors of the Kunitz type, structure, analgesic activity functional expression 



proton-sensitive channel


bovine pancreatic trypsin inhibitor


ethylenediaminetetraacetic acid




trifluoroacetic acid


vanilloid receptor 1


  1. 1.
    Carli, A., Bussotti, S., Mariottini, G.L., and Robbiano, L., Toxicon, 1996, vol. 34, pp. 496–500.CrossRefPubMedGoogle Scholar
  2. 2.
    Honma, T. and Shiomi, K., Mar. Biotechnol. (New York), 2006, vol. 8, pp. 1–10.CrossRefGoogle Scholar
  3. 3.
    Norton, R.S., Toxicon, 1991, vol. 29, pp. 1051–1084.CrossRefPubMedGoogle Scholar
  4. 4.
    Bosmans, F. and Tytgat, J., Toxicon, 2007, vol. 49, pp. 550–560.CrossRefPubMedGoogle Scholar
  5. 5.
    Castaneda, O. and Harvey, A.L., Toxicon, 2009 (in press).Google Scholar
  6. 6.
    Aneiros, A., Garcia, I., Martinez, J.R., Harvey, A.L., Anderson, A.J., Marshall, D.L., Engstrom, A., Hellman, U., and Karlsson, E., Biochim. Biophys. Acta, 1993, vol. 1157, pp. 86–92.PubMedGoogle Scholar
  7. 7.
    Castaneda, O., Sotolongo, V., Amor, A.M., Stocklin, R., Anderson, A.J., Harvey, A.L., Engstrom, A., Wernstedt, C., and Karlsson, E., Toxicon, 1995, vol. 33, pp. 603–613.CrossRefPubMedGoogle Scholar
  8. 8.
    Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J.M., Beress, L., and Lazdunski, M., J. Biol. Chem., 1995, vol. 270, pp. 25121–25126.CrossRefPubMedGoogle Scholar
  9. 9.
    Diochot, S., Schweitz, H., Beress, L., and Lazdunski, M., J. Biol. Chem., 1998, vol. 273, pp. 6744–6749.CrossRefPubMedGoogle Scholar
  10. 10.
    Honma, T., Kawahata, S., Ishida, M., Nagai, H., Nagashima, Y., and Shiomi, K., Peptides, 2008, vol. 29, pp. 536–544.CrossRefPubMedGoogle Scholar
  11. 11.
    Antuch, W., Berndt, K.D., Chavez, M.A., Delfin, J., and Wuthrich, K., Eur. J. Biochem., 1993, vol. 212, pp. 675–684.CrossRefPubMedGoogle Scholar
  12. 12.
    Zykova, T.A., Vinokurov, L.M., Markova, L.F., Kozlovskaya, E.P., and Elyakov, G.B., Bioorg. Khim., 1985, vol. 11, pp. 293–301.Google Scholar
  13. 13.
    Sokotun I.N., Leichenko E.V., Vakorina T.I., Es’kov A.A., Il’ina A.P., Monastyrnaya, M.M., and Kozlovskaya E.P., Bioorg. Khim., 2007, vol. 33, pp. 448–455 [Russ. J. Bioorg. Chem. (Engl. Transl.), vol. 33, pp. 415–422].PubMedGoogle Scholar
  14. 14.
    Deval, E., Noel, J., Lay, N., Alloui, A., Diochot, S., Friend, V., Jodar, M., Lazdunski, M., and Lingueglia, E., EMBO J., 2008, vol. 27, pp. 3047–3055.CrossRefPubMedGoogle Scholar
  15. 15.
    Andreev, Ya.A., Kozlov, S.A., Kozlovskaya, E.P., and Grishin, E.V., Dokl. Akad. Nauk, 2009, vol. 424, pp. 688–691.Google Scholar
  16. 16.
    Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D., Science, 2000, vol. 288, pp. 306–313.CrossRefPubMedGoogle Scholar
  17. 17.
    Immke, D.C. and Gavva, N.R., Semin. Cell Dev. Biol., 2006, vol. 17, pp. 582–591.CrossRefPubMedGoogle Scholar
  18. 18.
    Szallasi, A., Cortright, D.N., Blum, C.A., and Eid, S.R., Nat. Rev. Drug. Discov., 2007, vol. 6, pp. 357–372.CrossRefPubMedGoogle Scholar
  19. 19.
    Andreev, Y.A., Kozlov, S.A., Koshelev, S.G., Ivanova, E.A., Monastyrnaya, M.M., Kozlovskaya, E.P., and Grishin, E.V., J. Biol. Chem., 2008, vol. 283, pp. 23914–23921.CrossRefPubMedGoogle Scholar
  20. 20.
    Kozlov, S.A. and Grishin, E.V., Toxicon, 2007, vol. 49, pp. 721–726.CrossRefPubMedGoogle Scholar
  21. 21.
    Delfin, J., Martinez, I., Antuch, W., Morera, V., Gonzalez, Y., Rodriguez, R., Marquez, M., Saroyan, A., Larionova, N., Diaz, J., Padron, G., and Chavez, M., Toxicon, 1996, vol. 34, pp. 1367–1376.CrossRefPubMedGoogle Scholar
  22. 22.
    Gebhard, W, Tschesche, H, and Fritz, H, in Proteinase Inhibitors, Barrett, A.J. and Salvesen, G., Eds., Amsterdam: Elsevier, 1986, pp. 375–388.Google Scholar
  23. 23.
    Delaria, K.A., Muller, D.K., Marlor, C.W., and Brown, J.E., Das R.C., Roczniak S.O., and Tamburini P.P, J. Biol. Chem., 1997, vol. 272, pp. 12209–12214.CrossRefPubMedGoogle Scholar
  24. 24.
    Lundell, N. and Schreitmuller, T., Anal. Biochem., 1999, vol. 266, pp. 31–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Dixon, M., Biochem. J., 1953, vol. 55, pp. 170–171.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. A. Kozlov
    • 1
  • Ya A. Andreev
    • 1
  • A. N. Murashev
    • 2
  • D. I. Skobtsov
    • 2
  • I. A. D’yachenko
    • 2
  • E. V. Grishin
    • 1
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryPushchino Division Russian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations