Skip to main content

Stabilization of alkaline proteinase and cellulases via complex formation with chitosan for use as detergent components

Abstract

An effective approach to the stabilization of hydrolytic enzymes (alkaline proteinase and cellulases) via the complex formation with chitosan for their further use as detergent components has been developed. Interaction with chitosan results in a 35–50% increase in the level of catalytic activity of the enzymes after incubation for 60 min under the conditions of detergent use (alkaline pH, increased temperature, the presence of anionic surfactants) as compared to the system in the absence of chitosan both due to the enzyme stabilization and the increase of the starting level of catalytic activity. A twofold decrease of the enzyme inactivation constant is observed under the aforementioned conditions in the case of alkaline proteinase. In the case of cellulase preparation, the method for the control of the concentration of the active enzyme in the system modeling synthetic detergents has been suggested. The method is based on the enzymatic destruction of the stabilizing agent, chitosan, by enzymes of the cellulase complex. The destruction of chitosan removed the stabilizing effect, thus resulting in the inactivation of cellulases. The developed approaches allow for the widening of the field of the possible application of enzymes as detergent components.

This is a preview of subscription content, access via your institution.

Abbreviations

Cht:

chitosan

CM:

cellulose, carboxymethylcellulose

LAS:

linear alkyl sulfate

PE:

polyelectrolyte

TCA:

trichloroacetic acid

References

  1. Van Den Bergh, C., Kaiserman, H.B., and Ouwendijk, M., Biotech. Adv., 1997, vol. 15, pp. 210–215.

    Google Scholar 

  2. Moreira, K.A., Albuquerque, B.F., Teixeira, M.F.S., Porto, A.L.F., and Lima Filho, J.L., World J. Microb. Biotech., 2002, vol. 18, pp. 309–315.

    Article  Google Scholar 

  3. Kudryashova, E.V., Gladilin, A.K., and Levashov, A.V., Usp. Biol. Khim., 2002, vol. 42, pp. 257–294.

    CAS  Google Scholar 

  4. Kudryashova, E.V., Gladilin, A.K., Izumrudov, V.A., van Hoek, A., Visser, A.J.W.G., and Levashov, A.V., Biochim. Biophys. Acta, 2001, vol. 1550, pp. 129–143.

    PubMed  CAS  Google Scholar 

  5. Kudryashova, E.V., Gladilin, A.K., Vakurov, A.V., Heitz, F., Levashov, A.V., and Mozhaev, V.V., Biotech. Bioengin., 1997, vol. 55, pp. 267–277.

    Article  CAS  Google Scholar 

  6. Jeon, Y.-J., Park, P.-J., and Kim, S.-K., Carbohydrate, 2001, vol. 44, pp. 71–76.

    Article  CAS  Google Scholar 

  7. Uchida, Y, Izume, M, and Ohtakara, A, in Chitin and Chitosan: Chemistry, Biochemistry, Physical Properties and Applications, Skjak, G., Anthonsen, T., and Sandford, P., Eds., London: Elsevier, 1989.

    Google Scholar 

  8. Merzendorfer, H. and Zimoch, L., J. Exp. Biol., 2003, vol. 206, pp. 4393–4412.

    PubMed  Article  CAS  Google Scholar 

  9. Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., and Steurbaut, W., Appl. Mode Biomacromol., 2003, vol. 4, pp. 1457–1465.

    Article  CAS  Google Scholar 

  10. Tikhonov, V.E., Stepnova, E.A., Babak, V.G., Yamskov, I.A., Palma-Guerrero, J., Jansson, H.-B., Lopez-Llorca, L.V., Salinas, J., Gerasimenko, D.V., Avdienko, I.D., and Varlamov, V.P., Carbohydr. Polymers, 2006, vol. 64, pp. 66–72.

    Article  CAS  Google Scholar 

  11. Kendra, D.F. and Hadwiser, L.A., Exp. Mycol., 1984, vol. 8, pp. 276–281.

    Article  CAS  Google Scholar 

  12. Hirano, S. and Nagao, N., Agricult. Chem., 1989, vol. 53, pp. 3065–3066.

    CAS  Google Scholar 

  13. Chirkov, S.N., Applied Biochem. Microbiol., 2002, vol. 38, pp. 1–8.

    Article  CAS  Google Scholar 

  14. Zorov, I.N., Sinitsyn, A.P., and Kondrat’eva, E.G., Prikl. Biokhim. Mikrobiol., 2006, vol. 42, pp. 705–709.

    PubMed  CAS  Google Scholar 

  15. Grishutin, S.G., Gusakov, A.V., Markov, A.V., Ustinov, B.B., Semenova, M.V., and Sinitsyn, A.P., Biochim. Biophys. Acta, 2004, vol. 1674, pp. 268–281.

    PubMed  CAS  Google Scholar 

  16. Sterchi, E.E. and Stocker, W., Proteolytic Enzymes. Tools and Targets, Berlin: Springer Lab. Manual, 1999, pp. 12–13.

    Google Scholar 

  17. Sinitsyn, A.P., Gusakov, A.V., and Chernoglazov, V.M., Biokonversiya ligno-tsellyuloznykh materialov (Bioconversion of Lignin-Cellulose Materials), Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kudryashova.

Additional information

Original Russian Text © E.V. Kudryashova, I.S. Vasil’eva, I.N. Zorov, A.P. Sinitsyn, A.V. Levashov, 2009, published in Bioorganicheskaya Khimiya, 2009, Vol. 35, No. 3, pp. 368–375.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kudryashova, E.V., Vasil’eva, I.S., Zorov, I.N. et al. Stabilization of alkaline proteinase and cellulases via complex formation with chitosan for use as detergent components. Russ J Bioorg Chem 35, 335–341 (2009). https://doi.org/10.1134/S106816200903008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816200903008X

Key words

  • alkaline proteinase
  • catalytic activity
  • cellulases
  • chitosan
  • complex formation
  • stabilization