Skip to main content
Log in

Caffeine clusters as transmitters of actinomycin antibiotics to DNA in solution

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Using the screening model of hypochromism, we showed that caffeine forms regular clusters consisting of 8–12 molecules. Addition of 7-aminoactinomycin D (7AAMD, a fluorescent analogue of actinomycin D) to the clusters leads to its sorption on the cluster surface. Photoexcitation of 7AAMD leads to its desorption from the surface into the aqueous phase and emission of a quantum. Fluorescence of 7AAMD in the presence of caffeine clusters is quenched by dinitrophenol more weakly than without clusters (the quenching constants are ∼ 85 and ∼280 M−1, respectively) due to decreased steric availability of the antibiotic to the quencher. Addition of 7AAMD-caffeine complexes to DNA leads to a long-wavelength shift in the excitation spectrum and an increase in the fluorescence intensity along with a shift of the fluorescence spectrum to the short-wavelength area. This fact reflects redistribution of the antibiotic from the caffeine surface to the hydrophobic areas inside DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

7AAMD:

7-aminoactinomycin D

AMD:

actinomycin D

References

  1. Egorov, N.S., Silaev, A.B., and Katrukha, G.S., Antibiotiki-polipeptidy (Polypeptide Antibiotics), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  2. Gauze, G.F. and Dudnik, Yu.V., Protivoopukholevye antibiotiki (Antitumor Antibiotics), Moscow: Meditsina, 1987.

    Google Scholar 

  3. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, Oxford: Clarendon, 1986. Translated under the title Spravochnik biokhimika, Moscow: Mir, 1991, pp. 210–270.

    Google Scholar 

  4. Clementz, G.L. and Dailey, J.W., Am. Fam. Physician, 1988, vol. 37, pp. 167–170.

    CAS  PubMed  Google Scholar 

  5. Traganos, F., Karpuscinski, J., and Darzynkiewicz, Z., Cancer Res., 1991, vol. 51, pp. 3682–3688.

    CAS  PubMed  Google Scholar 

  6. Farber, S.J., J. Am. Med. Assoc., 1996, vol. 198, pp. 826–836.

    Article  Google Scholar 

  7. Rill, R.L. and Hecker, K.H., Biochemistry, 1996, vol. 35, pp. 3525–3533.

    Article  CAS  PubMed  Google Scholar 

  8. Jeeninga, R.E., Huthoff, H.T., Gultyaev, A.P., and Berkhout, B., Nucleic Acids Research, 1998, vol. 26, pp. 5472–5479.

    Article  CAS  PubMed  Google Scholar 

  9. Vekshin, N., Savintsev, I., Kovalev, A., Yelemessov, R., and Wadkins, R., J. Phys. Chem. B, 2001, vol. 105, pp. 8461–8467.

    Article  CAS  Google Scholar 

  10. Savintsev, I.V. and Vekshin, N.L., Mol. Biol. (Moscow), 2002, vol. 36, pp. 725–730.

    CAS  Google Scholar 

  11. Savintsev, I.V. and Vekshin, N.L., Prikl. Biokhim. Mikrobiol., 2004, vol. 40, pp. 421–428.

    CAS  PubMed  Google Scholar 

  12. Takusagawa, F., Carlson, R., and Weaver, R., Bioorg. Med. Chem., 2001, vol. 9, pp. 719–725.

    Article  CAS  PubMed  Google Scholar 

  13. Vekshin, N.L. and Savintsev, I.V., Biofizika, 2008, vol. 53, (in press).

  14. Vekshin, N.L. and Kovalev, A.E., J. Biochem., 2006, vol. 140, pp. 185–191.

    Article  CAS  PubMed  Google Scholar 

  15. Origlia-Luster, M.L., Patterson, B.A., and Woolley, E.M., J. Chem. Thermodyn., 2002, vol. 34, pp. 1909–1921.

    Article  CAS  Google Scholar 

  16. Davies, D.B., Veselkov, D.A., Djimant, L.N., and Veselkov, A.N., Eur. Biophys. J., 2001, vol. 30, pp. 354–366.

    Article  CAS  PubMed  Google Scholar 

  17. Veselkov, D.A., Kodintsev, V.V., Pakhomov, V.I., Dymant, L.N., Devis, D.B., and Veselkov, A.N., Biofizika, 2000, vol. 45, pp. 197–206.

    CAS  PubMed  Google Scholar 

  18. Veselkov, A.N., Evstigneev, M.P., Rozvadovskaya, A.O., Mukhina, Yu.V., Rybakova, K.A., and Devis, D.B., Biofizika, 2005, vol. 50, pp. 20–27.

    CAS  PubMed  Google Scholar 

  19. Shestopalova, A.V., Biofizika, 2006, vol. 51, pp. 389–401.

    CAS  PubMed  Google Scholar 

  20. Vekshin, N.L., Photonics of Biopolymers, Berlin: Springer, 2002, pp. 19–120.

    Google Scholar 

  21. Vekshin, N.L., Fluorestsentnaya spektroskopiya biopolimerov (Fluorescent Spectroscopy of Biopolymers), Pushchino: Foton-vek, 2006.

    Google Scholar 

  22. Vekshin, N.L., J. Biol. Physics, 1999, vol. 25, pp. 339–354.

    Article  CAS  Google Scholar 

  23. Kovalev, A.E., Yakovenko, A.A., and Vekshin, N.L., Biofizika, 2004, vol. 49, pp. 1030–1037.

    CAS  PubMed  Google Scholar 

  24. Lakowicz, J.R., Principles of Fluorescent Spectroscopy, New York: Kluwer Academic/Plenum, 1999. Chapters 8, 9.

    Google Scholar 

  25. Wadkins, R. and Jovin, T., Biochemistry, 1991, vol. 30, pp. 9469–9478.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Vekshin.

Additional information

Original Russian Text © M.A. Bitekhtina, N.L. Vekshin, 2008, published in Bioorganicheskaya Khimiya, 2008, Vol. 34, No. 2, pp. 256–261.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitekhtina, M.A., Vekshin, N.L. Caffeine clusters as transmitters of actinomycin antibiotics to DNA in solution. Russ J Bioorg Chem 34, 234–238 (2008). https://doi.org/10.1134/S1068162008020143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162008020143

Key words