Skip to main content

Production of antibodies to the α7-subunit of human acetylcholine receptor with the use of immunoactive synthetic peptides


Potential B epitopes and T-helper epitopes in the N-terminal extracellular domain of the α7-subunit of human acetylchloline receptor (AChR) were theoretically calculated in order to reveal peptides that can induce the formation of specific antibodies to this domain. Four peptides structurally corresponding to four α7-subunit regions containing 16–23 aa and three of their truncated analogues were synthesized. Rabbits were immunized with both free peptides and protein conjugates of their truncated analogues, and a panel of antibodies to various exposed regions of the N-terminal extracellular domain of the AChR α7-subunit was obtained. All of the four predicted peptides were shown to induce the production of antipeptide antibodies in free form, without conjugation with any protein carrier. The free peptides and the protein conjugates of truncated analogues induced the formation of almost equal levels of antibodies. Most of the obtained antisera contained antibodies that bind to the recombinant extracellular N-terminal domain of the rat AChR α7-subunit and do not react with the analogous domain of the α1-subunit of the ray Torpedo californica AChR.

This is a preview of subscription content, access via your institution.



acetylcholine receptor


acetylcholine-binding protein








Freund’s incomplete adjuvant


Freund’s complete adjuvant




keyhole limpet hemocyanin


phosphate-buffered saline (0.15 N NaCl in 0.01 N NaH2PO4, pH 7.4)




O-(benzotriazole-1-yl)-N,N,N′,N′-tetramethylurea tetrafluoroborate




  1. Karlin, A., Nat. Rev. Neurosci., 2002, vol. 3, pp. 102–114.

    Article  PubMed  CAS  Google Scholar 

  2. Hucho, F., Tsetlin, V.I., and Machold, J., Eur. J. Biochem., 1996, vol. 239, pp. 539–557.

    Article  PubMed  CAS  Google Scholar 

  3. Lindsrom, J, in Handbook of Exp. Pharmacology, Clementi, F., Fornassi, D., and Gotti, C., Eds., Berlin: Springer Verlag, 2000, pp. 101–162.

    Google Scholar 

  4. Le Novere, N., Corringer, P.J., and Changeux, J.-P.J., Neurobiology, 2002, vol. 53, pp. 447–456.

    Google Scholar 

  5. Brumwell, C.L., Johnson, J.L., and Jacob, M.H., J. Neurosci., 2002, vol. 22, pp. 8101–8109.

    PubMed  CAS  Google Scholar 

  6. Martin, L.F., Kem, W.R., and Freedman, R., Psychopharmacology (Berlin), 2004, vol. 174, pp. 54–64.

    Article  CAS  Google Scholar 

  7. Kihara, T. and Shimohama, S., Acta Neurobiol. Exp., 2004, vol. 64, pp. 99–105.

    Google Scholar 

  8. Tzartos, S.J., Rand, D.E., Einarson, B.L., and Lindstrom, J.M., J. Biol. Chem., 1981, vol. 256, pp. 8635–8645.

    PubMed  CAS  Google Scholar 

  9. Schoepfer, R., Conroy, W.G., Whiting, P., Gore, M., and Lindstrom, J., Neuron, 1990, vol. 5, pp. 35–48.

    Article  PubMed  CAS  Google Scholar 

  10. Research & Diagnostic Antibodies,

  11. Criado, M., Hochschwender, S., Sarin, V., Fox, J.L., and Lindstrom, J., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 2004–2008.

    PubMed  CAS  Google Scholar 

  12. Skok, M.V., Voitenko, L.P., Voitenko, S.V., Lykhmus, E.Y., Kalashnik, E.N., Litvin, T.I., Tzartos, S.J., and Skok, V.I., Neuroscience, 1999, vol. 93, pp. 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  13. Purcell, A., Zeng, W., Mifsud, N., Ely, L., Macdonald, W., and Jackson, D., J. Pept. Sci., 2003, vol. 9, pp. 255–281.

    PubMed  CAS  Google Scholar 

  14. Baggi, F., Annoni, A., Ubiali, F., Milani, M., Longhi, R., Scaioli, W., Cornelio, F., Mantegazza, R., and Antozzi, C., J. Immunol., 2004, vol. 172, pp. 2697–2703.

    PubMed  CAS  Google Scholar 

  15. Yoshikawa, H., Lambert, E.H., Walser-Kuntz, D.R., Yasukawa, Y., McCormick, D.J., and Lennon, V.A., J. Immunol., 1997, vol. 159, pp. 1570–1577.

    PubMed  CAS  Google Scholar 

  16. Lennon, V.A., McCormick, D.J., Lambert, E.H., Griesmann, G.E., and Atassi, M.Z., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 8805–8809.

    PubMed  CAS  Google Scholar 

  17. Koroev, D.O., Oboznaya, M.B., Zhmak, M.N., Volkova, T.D., Titova, M.A., Kotel’nikova, O.V., Vol’pina, O.M., Nesmeyanov, V.A., Alliluev, A.P., and Ivanov, V.T., Russ. J. Bioorg. Chem., 2002, vol. 28, pp. 263–268.

    Article  CAS  Google Scholar 

  18. Volpina, O.M., Volkova, T.D., Koroev, D.O., Ivanov, V.T., Ozherelkov, S.V., Khoretonenko, M.V., Vorovitch, M.F., Stephenson, J.R., and Timofeev, A.V., Virus Res., 2005, in press.

  19. Brejc, K., van Dijk, W.J., Klaassen, R.V., Schuurmans, M., van Der Oost, J., Smit, A.B., and Sixma, T.K., Nature, 2001, vol. 411, pp. 269–276.

    Article  PubMed  CAS  Google Scholar 

  20. Novere, N., Grutter, T., and Changeux, J.-P., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 3210–3215.

    PubMed  Google Scholar 


  22. Vol’pina, O.M., Titova, M.A., Zhmak, M.N., Koroev, D.O., Oboznaya, M.B., Volkova, T.D., and Ivanov, V.T., Russ. J. Bioorg. Chem., 2002, vol. 28, pp. 349–356.

    CAS  Google Scholar 

  23. Peng, X., Katz, M., Gerzanich, V., Anand, R., and Lindstrom, J., Mol. Pharmacol., 1994, vol. 45, pp. 546–554.

    PubMed  CAS  Google Scholar 

  24. Korotina, A.S., Kryukova, E.V., Azeeva, E.A., Sheval’e, A.F., Utkin, Yu.N., and Tsetlin, V.I., Russ. J. Bioorg. Chem., 2003, vol. 29, pp. 358–362.

    Article  CAS  Google Scholar 

  25. Alexeev, T., Krivoshein, A., Shevalier, A., Kudelina, I., Telyakova, O., Vincent, A., Utkin, Y., Hucho, F., and Tsetlin, V., Eur. J. Biochem., 1999, vol. 259, pp. 310–319.

    Article  PubMed  CAS  Google Scholar 

  26. Marinou, M. and Tzartos, S.J., Biochem. J., 2003, vol. 372, pp. 543–554.

    Article  PubMed  CAS  Google Scholar 

  27. Sarin, V.K., Kent, S.B.H., Tam, J.P., and Merrifield, R.B., Anal. Biochem., 1981, vol. 117, pp. 147–157.

    Article  PubMed  CAS  Google Scholar 

  28. Gisin, B.F., Anal. Chim. Acta, 1972, vol. 58, pp. 248–249.

    Article  PubMed  CAS  Google Scholar 

  29. Kamysz, W., Okroj, M., Lempicka, E., Ossowski, T., and Lukasiak, J., Acta Chromatographica, 2004, no. 14, pp. 180–186.

  30. Koroev, D.O., Kotel’nikova, O.V., Vol’pina, O.M., Zhmak, M.N., Kupriyanova, M.A., Agafonova, S.A., Alliluev, A.P., Litvinov, I.S., Nesmeyanov, V.A., and Ivanov, V.T., Russ. J. Bioorg. Chem., 2000, vol. 26, pp. 291–296.

    CAS  Google Scholar 

  31. Schmidt, J. and Raftery, M.A., Anal. Biochem., 1973, vol. 52, pp. 349–354.

    Article  PubMed  CAS  Google Scholar 

  32. Klukas, O., Peshenko, I.A., Rodionov, I.L., Telyakova, O.V., Utkin, Yu.N., and Tsctlin, V.I., Bioorg. Khim., 1995, vol. 21, pp. 152–155.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. M. Volpina.

Additional information

Original Russian Text © O.M. Volpina, M.A. Titova, D.O. Koroev, T.D. Volkova, M.B. Oboznaya, M.N. Zhmak, T.A. Aleekseev, V.I. Tsetlin, 2006, published in Bioorganicheskaya Khimiya, 2006, Vol. 32, No. 2, pp. 169–175.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volpina, O.M., Titova, M.A., Koroev, D.O. et al. Production of antibodies to the α7-subunit of human acetylcholine receptor with the use of immunoactive synthetic peptides. Russ J Bioorg Chem 32, 154–159 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Key words

  • acetylcholine receptor
  • antibodies
  • α7-subunit
  • B epitopes
  • T-helper epitopes
  • synthetic peptides