Skip to main content
Log in

Predictors of Insect Damage to Forest Stands According to Satellite Data Using the Siberian Silkmoth Dendrolimis Sibiricus Tschetv as an Example

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Population outbreaks of such species as Dendrolimus sibiricus Tschetv., in Siberian taiga forests begin with areas of several hectares and develop up to hundreds of thousands of hectares, resulting in significant damage to forests. Boundaries of foci change with time depending on external factors, population dynamics, and the state of forage trees. In this regard, it is important to determine the beginning of an outbreak and the affected area in advance as predictors of increasing pest numbers. To assess necessary conditions for an outbreak, a method for assessing the state of forest stands is proposed based on remote sensing data. In this regard, it is important to assess risks of outbreaks and to determine in advance their onset times and starting zones. In order to evaluate necessary conditions for an outbreak, a “cascade” of factors is considered: geophysical (solar activity), weather, and the state of forest stands. Each of these factors is characterized by its own area, within the bounds of which any changes in this particular factor affect the insect population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., and Tucker, C.J., A comparative study of NOAA-AVHRR derived drought indices using change vector analysis, Int. J. Remote Sens., 2006, vol. 105, no. 1, pp. 9–22.

    ADS  Google Scholar 

  2. Bjørnstad, O.N., Peltonen, M., Liebhold, A.M., and Baltensweiler, W., Waves of larch budmoth outbreaks in the European Alps, Science, 2002, vol. 298, no. 5595, pp. 1020–1023.

    Article  PubMed  ADS  Google Scholar 

  3. Boldaruev, V.O., Dinamika chislennosti sibirskogo shelkopryada i ego parazitov (Population Dinamics of White-Lined Silk Moth and its Parasites), Ulan-Ude: Buryat. Kn. Izd., 1969.

  4. Boyd, I.L., Freer-Smith, P.H., Gilligan, C.A., and Godfray, H.C.J., The consequence of tree pests and disea-ses for ecosystem services, Science, 2013, vol. 342, p. 823.

    Article  CAS  Google Scholar 

  5. Cunha, M. and Richter, C., A time-frequency analysis on the impact of climate variability with focus on semi-natural montane grassland meadows, IEEE Trans. Geosci. Remote Sens., 2014, vol. 52, no. 10, pp. 6156–6164.

    Article  ADS  Google Scholar 

  6. Epova, V.I. and Pleshanov, A.S., Zony vredonosnosti nasekomykh-fillofagov Aziatskoi Rossii (Areas of Harmfulness of Phytophagous Insects in Asian part of Russia), Novosibirsk: Nauka, 1995.

  7. Fahse, L. and Heurich, M., Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level, Ecol. Model., 2011, vol. 222, no. 11, pp. 1833–1846.

    Article  Google Scholar 

  8. Fernández, A. and Fort, H., Catastrophic phase transitions and early warnings in a spatial ecological model, J. Stat. Mech.: Theory Exp., 2009, vol. 9, p. P09014.

    Google Scholar 

  9. Ims, R.A., Yoccoz, N.G., and Hagen, S.B., Do sub-Arctic winter moth populations in coastal birch forest exhibit spatially synchronous dynamics? J. Anim. Ecol., 2004, vol. 73, pp. 1129–1136.

    Article  Google Scholar 

  10. Isaev, A.S., Pal’nikova, E.N., Sukhovol’skii, V.G., and Tarasova, O.V., Dinamika chislennosti lesnykh nasekomykh-fillofagov: modeli i prognozy (Population Dynamics of Forest Phyllophagous Insects: Models and Prognoses), Moscow: KMK, 2015.

    Google Scholar 

  11. Johnson, D.M., Liebhold, A.M., Tobin, P.C., and Bjørnstad, O.N., Allee effects and pulsed invasion by the gypsy moth, Nature, 2006, vol. 444, pp. 361–363.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Kautz, M., Meddens, A.J.H., Hall, R.J., and Arneth, A., Biotic disturbances in northern hemisphere forests—A synthesis of recent data, uncertainties and implications for forest monitoring and modeling, Global Ecol. Biogeogr., 2017, vol. 26, no. 5, pp. 533–552.

    Article  Google Scholar 

  13. Kolomiets, N.G., Parazity i khishchniki sibirskogo shelkopryada (Parasites and Predators of Siberian Moth), Novosibirsk: Sib. Otd. Akad. Nauk SSSR, 1962.

  14. Kondakov, Y.P., Zakonomernosti massovykh razmnozhenii sibirskogo shelkopryada (Regularities of the Outbreaks of Siberian Silk Moth), in Ekologiya populyatsii lesnykh zhivotnykh Sibiri (Population Ecology of the Forest Animals in Siberia), Novosibirsk: Nauka, 1974, pp. 206–265.

  15. Kosiba, A.M., Meigs, G.W., and Tait, E.R., Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016, For. Ecol. Manage., 2018, vol. 430, pp. 94–104.

    Article  Google Scholar 

  16. Kovalev, A. and Soukhovolsky, V., Analysis of forest stand resistance to insect attack according to remote sensing data, Forests, 2021, vol. 12.https://doi.org/10.3390/f12091188

  17. Lewis, M.A., Nelson, W., and Xu, C., A structured threshold model for mountain pine beetle outbreak, Bull. Mathem. Biol., 2010, vol. 72, pp. 565–589.

    Article  MathSciNet  Google Scholar 

  18. Liang, L., Chen, Y., Hawbaker, T., Zhu, Z., and Gong, P., Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data, Remote Sens., 2014, vol. 6, pp. 5696–5716.

    Article  ADS  Google Scholar 

  19. Liebhold, A.M., Koenig, W.D., and Bjørnstad, O.N., Spatial synchrony in population dynamics, Annu. Rev. Ecol., Evol., Syst., 2004, vol. 35, pp. 467–490.

    Article  Google Scholar 

  20. Liu, Yan, Hill, M.J., Zhang Xiaoyang, Wang Zhuosen, Richardson, A.D., Hufkens, K., Filippa, G., Baldocchi, D.D., Ma Siyan, Verfaillie, J., and Schaaf, C.B., Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales, Agric. For. Meteorol., 2017, vols. 237–238, pp. 311–325.

    Article  ADS  Google Scholar 

  21. Logan, J.A., White, P., Bentz, B.J., and Powell, J.A., Model analysis of spatial patterns in mountain pine beetle outbreaks, Theor. Popul. Biol., 1998, vol. 53, no. 3, pp. 236–255.

    Article  CAS  PubMed  Google Scholar 

  22. Mikhailov, Y.Z. and Sumina, N.Y., Siberian moth Dendrolimus superans (Butler, 1877) and control of it in Irkutsk region, Baik. Zool. Zh., 2012, vol. 3, no. 11, pp. 25–29.

    Google Scholar 

  23. Nelson, W.A., Bjørnstad, O.N., and Yamanaka, T., Recurrent insect outbreaks caused by temperature-driven changes in system stability, Science, 2013, vol. 341, no. 6147, pp. 796–799.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Olsson, P.O., Lindstrom, J., and Eldundh, L., Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI, Remote Sens. Environ., 2016, vol. 181, pp. 42–53.

    Article  ADS  Google Scholar 

  25. Pavlov, I.N., Litovka, Y.A., Golubev, D.V., Astapenko, S.A., and Chromogin, P.V., New outbreak of Dendrolimus sibiricus Tschetv. in Siberia (2012–2017): Monitoring, modeling and biological control, Contemp. Probl. Ecol., 2018, vol. 11, no. 4, pp. 406–419.

    Article  Google Scholar 

  26. Peters, D.P.C., Pielke, R.A., Bestelmeyer, B.T., Allen, C.D., Munsonmcgee, S., and Havstad, K.M., Cross-scale interactions, nonlinearities, and forecasting catastrophic events, Proc. Natl. Acad. Sci., 2004, vol. 101, pp. 15130–15135.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Pleshanov, A.S., Nasekomye-defolianty listvennichnykh lesov Vostochnoi Sibiri (Defoliator Insects of the Larch Forests of Eastern Siberia), Novosibirsk: Nauka, 1982.

  28. Raffa, K.F., Aukema, B.H., Bentz, B.J., Carroll, A.L., Hicke, J.A., Turner, M.G., and Romme, W.H., Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions, Bioscience, 2008, vol. 58, no. 6, pp. 501–517.

    Article  Google Scholar 

  29. Rechid, D., Raddatz, T.J., and Jacob, D., Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling, Theor. Appl. Climatol., 2009, vol. 95, pp. 245–255.

    Article  ADS  Google Scholar 

  30. Royama, T., Population dynamics of the spruce budworm Choristoneura fumiferana, Ecol. Monogr., 1984, vol. 54, no. 4, pp. 429–462.

    Article  Google Scholar 

  31. Rozhkov, A.S., Massovoe razmnozhenie sibirskogo shelkopryada i metody bor’by s nim (Siberian Moths Outbreaks and the Control Measures), Moscow: Nauka, 1965.

  32. Seidl, R., Müller, J., Hothorn, T., Bässler, C., Heurich, M., and Kautz, M., Small beetle, large-scale drivers: How regional and landscape factors affect outbreaks of the European spruce bark beetle, J. Appl. Ecol., 2016, vol. 53, no. 2, pp. 530–540.

    Article  Google Scholar 

  33. Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., and Honkaniemi, J., Forest disturbances under climate change, Nat. Clim. Change, 2017, vol. 7, no. 6.

  34. Senf, C., Campbell, E.M., Pflugmacher, D., Wulder, M.A., and Hostert, P., A multi-scale analysis of western spruce budworm outbreak dynamics, Landscape Ecol., 2017, pp. 1–14.

  35. Spruce, J.P., Sader, S., Ryan, R.E., Smoot, J., Kuper, P., Ross, K., Prados, D., Russell, J., Gasser, G., McKellip, R., and Hargrove, W., Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks, Remote Sens. Environ., 2011, vol. 115, pp. 427–437.

    Article  ADS  Google Scholar 

  36. Tarasova, O.V. and Volkov, V.E., Influence of weather conditions on the development of Siberian silkmoth outbreaks in Central Siberia, Sib. Lesn. Zh., 2021, no. 5, pp. 49–59.

  37. Tenow, O., Nilssen, A.C., and Bylund, H., Geometrid outbreak waves travel across Europe, J. Anim. Ecol., 2012, vol. 82, no. 1, pp. 84–95.

    Article  PubMed  Google Scholar 

  38. Thayn, J.B., Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA, Remote Sens. Environ., 2013, vol. 136, pp. 210–217.

    Article  ADS  Google Scholar 

  39. Tucker, C.J. and Sellers, P.J., Satellite remote sensing of primary production, J. Remote Sens., 1986, vol. 7, pp. 1395–1416.

    Article  Google Scholar 

  40. Verbesselt, J., Zeileis, A., and Herold, M., Near real-time disturbance detection using satellite image time series, Remote Sens. Environ., 2012, vol. 123, pp. 98–108.

    Article  ADS  Google Scholar 

  41. Williams, D.W. and Liebhold, A.M., Spatial synchrony of spruce budworm outbreaks in eastern North America, Ecology, 2000, vol. 81, pp. 2753–2766.

    Article  Google Scholar 

  42. Yurchenko, G.I. and Turova, G.I., The outbreaks of Siberian moth in the forests of Krasnoyarsk Krai, in Entomologicheskie issledovaniya v Sibiri (Parasites of the Sibe-rian Silk Moth and the White-Lined Silk Moth in the Far East of Russia), Krasnoyarsk: Krasnoyarsk. Fil. Sib. Otd. REO, 2002, vol. 2, pp. 75–86.

  43. Zhou, G. and Liebhold, A.M., Forecasting the spatial dynamics of gypsy moth outbreaks using cellular transition models, Landscape Ecol., 1995, vol. 10, no. 3, pp. 177–189.

    Article  Google Scholar 

Download references

Funding

The work has been carried out with financial support of the Russian Science Foundation (grant No. 22-24-00148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kovalev.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, A.V., Tsikalova, P.E. Predictors of Insect Damage to Forest Stands According to Satellite Data Using the Siberian Silkmoth Dendrolimis Sibiricus Tschetv as an Example. Russ J Ecol 54, 602–610 (2023). https://doi.org/10.1134/S1067413623070081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413623070081

Keywords:

Navigation