Skip to main content
Log in

Effects of Drought on Dissolved Organic Carbon Content in Grassland and Forest Soils

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Drought has been proved to be an important climatic factor affecting carbon (C) and nitrogen (N) cycles in terrestrial ecosystems. Despite this general understanding, relatively few studies have been conducted on the effects of drought on dissolved organic carbon (DOC) in soil in different ecosystems. To investigate whether the effects of drought on soil DOC varied in different ecosystems, and whether the difference increased with drought intensity (DI) and drought duration (DD), we conducted a meta-analysis synthesizing responses of DOC to droughts (or precipitation reduction experiments) in two main natural ecosystems: forests and grasslands. The data was gathered from 43 recent publications (457 samples of data at 34 sites) about the drought experiments across the globe. On average, drought reduced the DOC content of forest soils by 9.24%, and this effect escalated with increase in DI and mean annual temperature (MAT). In contrast, the DOC content of grassland soils was not significantly affected by drought. Overall, the effects of drought on soil DOC depend on ecosystem type (ET), mean annual precipitation (MAP), MAT and DI, and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gommet, C., Lauerwald, R., Ciais, P., et al., Spatiotemporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching into the European river network, Earth Syst. Dyn., 2022, vol. 13, pp. 393–418. https://doi.org/10.5194/esd-13-393-2022

    Article  ADS  Google Scholar 

  2. Batjes, N.H., Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 2014, vol. 65, pp. 10–21. https://doi.org/10.1111/ejss.12114_2

    Article  CAS  Google Scholar 

  3. Dong, X.L., Hao, Q.Y., Li, G.T., Lin, Q.M., and Zhao, X.R., Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions, J. Soil. Sediment, 2017, vol. 17, pp. 1054–1063. https://doi.org/10.1007/s11368-016-1615-y

    Article  CAS  Google Scholar 

  4. Falkowski, P., Scholes, R.J., Boyle, E., et al., The global carbon cycle: A test of our knowledge of earth as a system, Science, 2000, vol. 290, pp. 291–296. https://doi.org/10.1126/science.290.5490.291

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Long, G.Q., Jiang, Y.J., and Sun, B., Seasonal and inter-annual variation of leaching of dissolved organic carbon and nitrogen under long-term manure application in an acidic clay soil in subtropical China, Soil Tillage Res., 2015, vol. 146, pp. 270–278. https://doi.org/10.1016/j.still.2014.09.020

    Article  Google Scholar 

  6. Said-Pullicino, D., Miniotti, E.F., Sodano, M., et al., Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices, Plant Soil, 2016, vol. 401, pp. 273–290. https://doi.org/10.1007/s11104-015-2751-7

    Article  CAS  Google Scholar 

  7. He, W., Chen, M., Schlautman, M.A., and Hur, J., Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review, Sci. Total Environ., 2016, vol. 551, pp. 415–428. https://doi.org/10.1016/j.scitotenv.2016.02.031

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Ge, Z.K., Gao, L., Ma, N., Hu, E., and Li, M., Variation in the content and fluorescent composition of dissolved organic matter in soil water during rainfall-induced wetting and extract of dried soil, Sci. Total. Environ., 2021, vol. 791, р. 148296. https://doi.org/10.1016/j.scitotenv.2021.148296

  9. Zhao, C., He, X.X., Dan, X.Q., et al., Specific dissolved organic matter components drive the assembly of a core microbial community in acidic soil of ammonium-preferring plants, Catena, 2021, vol. 207, p. 105584. https://doi.org/10.1016/j.catena.2021.105584

    Article  CAS  Google Scholar 

  10. Campbell, T.P., Ulrich, D.E.M., Toyoda, J., et al., Microbial communities influence soil dissolved organic carbon concentration by altering metabolite composition, Front. Microbiol., 2022, vol. 12, p. 799014. https://doi.org/10.3389/fmicb.2021.799014

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cui, H., Ou, Y., Wang, L.X., et al., Dissolved organic carbon, a critical factor to increase the bioavailability of phosphorus during biochar-amended aerobic composting, J. Environ. Sci., 2022, vol. 113, pp. 356–364. https://doi.org/10.1016/j.jes.2021.06.0191001-0742

    Article  CAS  Google Scholar 

  12. Hawkes, C.V., Shinada, M., and Kivlin, S.N., Historical climate legacies on soil respiration persist despite extreme changes in rainfall, Soil Biol. Biochem., 2020, vol. 143, p. 107752. https://doi.org/10.1016/j.soilbio.2020.107752

    Article  CAS  Google Scholar 

  13. Fu, J., Gasche, R., Wang, N., et al., Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions, Biogeochemistry, 2019, vol. 145, pp. 47–61. https://doi.org/10.1007/s10533-019-00589-y

    Article  CAS  Google Scholar 

  14. Wu, M., Li, P.F., Li, G.L., et al., The chemodiversity of paddy soil dissolved organic matter is shaped and homogenized by bacterial communities that are orchestrated by geographic distance and fertilizations, Soil Biol. Biochem., 2021, vol. 161, p. 108374. https://doi.org/10.1016/j.soilbio.2021.-108374

    Article  CAS  Google Scholar 

  15. Bu, X.L., Gu, X.Y., Zhou, X.Q., et al., Extreme drought slightly decreased soil labile organic C and N contents and altered microbial community structure in a subtropical evergreen forest, Forest Ecol. Manage., 2018, vol. 429, pp. 18–27. https://doi.org/10.1016/j.foreco.2018.06.036

    Article  Google Scholar 

  16. Querejeta, J.I., Schlaeppi, K., Lopez-Garcia, A., et al., Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition, New Phytol., 2021, vol. 232, pp. 1399–1413. https://doi.org/10.1111/nph.17661

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, Z.W., Lu, Y.Y., Xu, J.Q., et al., Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting, Bioresour. Technol., 2019, vol. 292, p. 121942. https://doi.org/10.1016/j.biortech.2019.121942

    Article  CAS  PubMed  Google Scholar 

  18. Steinweg, J.M., Dukes, J.S., Paul, E.A., and Wallenstein, M.D., Microbial responses to multi-factor climate change: effects on soil enzymes, Front. Microbiol., 2013, vol. 4, p. 00146. https://doi.org/10.3389/fmicb.2013.00146

    Article  Google Scholar 

  19. Chantarasrisuriyawong, T., Prasert, T., Yuthawong, V., and Phungsai, P., Changes in molecular dissolved organic matter and disinfection by-product formation during granular activated carbon filtration by unknown screening analysis with Orbitrap mass spectrometry, Water Res., 2022, vol. 211, p. 118039. https://doi.org/ARTN11803910.1016/j.watres.2022.118039

    Article  CAS  PubMed  Google Scholar 

  20. Chen, S., Zhong, J., Li, C., et al., Coupled effects of hydrology and temperature on temporal dynamics of dissolved carbon in the Min River, Tibetan Plateau, J. Hydrol., 2021, vol. 593, p. 148968. https://doi.org/10.1016/j.jhydrol.2020.125641

    Article  CAS  Google Scholar 

  21. Matias, L., Castro, J., and Zamora, R., Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem, Global Change Biol., 2011, vol. 17, pp. 1646–1657. https://doi.org/10.1111/j.1365-2486.2010.02338.x

    Article  ADS  Google Scholar 

  22. Koyama, A., Steinweg, J.M., Haddix, M.L., Dukes, J.S., and Wallenstein, M.D., Soil bacterial community responses to altered precipitation and temperature regimes in an old field grassland are mediated by plants, FEMS Microbiol. Ecol., 2018, vol. 94, p. fix156. https://doi.org/10.1093/femsec/fix156

    Article  Google Scholar 

  23. Camino-Serrano, M., Guenet, B., Luyssaert, S., et al., ORCHIDEE-SOM: Modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe, Geosci. Model Dev., 2018, vol. 11, pp. 937–957. https://doi.org/10.5194/gmd-11-937-2018

    Article  CAS  ADS  Google Scholar 

  24. Geng, S., Chen, Z., Ma, S., et al., Throughfall reduction diminished the enhancing effect of N addition on soil N leaching loss in an old, temperate forest, Environ. Pollut., 2020, vol. 261, p. 114090. https://doi.org/10.1016/j.envpol.2020.114090

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, H., Deng, Q.,Zhou, G., et al. Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China, Biogeosciences, 2013, vol. 10, pp. 3963–3982. https://doi.org/10.5194/bg-10-3963-2013

    Article  ADS  Google Scholar 

  26. Chen, S., Du, Y.X., Das, P., et al., Agricultural land use changes stream dissolved organic matter via altering soil inputs to streams, Sci. Total Environ., 2021, vol. 796, p. 148968. https://doi.org/10.1016/j.scitotenv.20-21.148968

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Luo, Y.Q.H., Hui, D.F., and Zhang, D.Q., Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis, Ecology, 2006, vol. 87, pp. 53–63. https://doi.org/10.1890/04-1724

    Article  PubMed  Google Scholar 

  28. Jerabkova, L., Prescott, C.E., Titus, B.D., Hope, G.D., and Walters, M.B., A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests, Can. J. For. Res., 2011, vol. 41, pp. 1852–1870. https://doi.org/10.1139/x11-087

    Article  CAS  Google Scholar 

  29. Sun, Y., Liao, J.H., Zou, X.M., et al., Coherent responses of terrestrial C:N stoichiometry to drought across plants, soil, and microorganisms in forests and grasslands, Agric. For. Meteorol., 2020, vol. 292, p. 108104. https://doi.org/10.1016/j.agrformet.2020.108104

    Article  Google Scholar 

  30. Hedges, L.V.G., Gurevitch, J., and Curtis, P.S., The meta-analysis of response ratios in experimental ecology, Ecology, 1999, vol. 80, pp. 1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:T-MAORR]2.0.CO;2

    Article  Google Scholar 

  31. Treseder, K.K., Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett., 2008, vol. 11, pp. 1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x

    Article  PubMed  Google Scholar 

  32. Veroniki, A.A., Jackson, D., Viechtbauer, W., et al., Methods to estimate the between-study variance and its uncertainty in meta-analysis, Res. Synth. Methods, 2016, vol. 7, pp. 55–79. https://doi.org/10.1002/jrsm.1164

    Article  PubMed  Google Scholar 

  33. Deng, L., Peng, C.H., Kim, D.G., et al., Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems, Earth-Sci. Rev., 2021, vol. 214, p. 103501. https://doi.org/10.1016/j.earscirev.2020.103501

    Article  CAS  Google Scholar 

  34. Zheng, Y.J., Jin, Y.G., Ma, R.Y., et al., Drought shrinks terrestrial upland resilience to climate change, Global Ecol. Biogeogr., 2020, vol. 29, pp. 1840–1851. https://doi.org/10.1111/geb.13160

    Article  Google Scholar 

  35. Ren, C.J., Zhao, F.Z., Shi, Z., et al., Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation, Soil Biol. Biochem., 2017, vol. 115, pp. 1–10. https://doi.org/10.1016/j.soilbio.2017.08.002

    Article  CAS  Google Scholar 

  36. Wallace, B.C., Lajeunesse, M.J., Dietz, G., et al., OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology, Methods Ecol. Evol., 2017, vol. 8, pp. 941–947. https://doi.org/10.1111/2041-210x.12708

    Article  Google Scholar 

  37. Curtright, A.J. and Tiemann, L.K., Meta-analysis dataset of soil extracellular enzyme activities in intercropping systems, Data Brief, 2021, vol. 38, p. 107284. https://doi.org/10.1016/j.dib.2021.107284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Croux, C. and Dehon, C., Influence functions of the Spearman and Kendall correlation measures, Stat. Methods Appl., 2010, vol. 19, pp. 497–515. https://doi.org/10.1007/s10260-010-0142-z

    Article  MathSciNet  Google Scholar 

  39. Emde, D., Hannam, K.D., Most, I., Nelson, L.M., and Jones, M.D., Soil organic carbon in irrigated agricultural systems: A meta-analysis, Global Change Biol., 2021, vol. 27, pp. 3898–3910. https://doi.org/10.1111/gcb.15680

    Article  CAS  Google Scholar 

  40. Rosenberg, M.S., The file-drawer problem revisited: A general weighted method for calculating failsafe numbers in meta-analysis, Evolution, 2005, vol. 59, pp. 464–468. https://doi.org/10.1111/j.0014-3820.2005.tb01004.x

    Article  PubMed  Google Scholar 

  41. Ignacio Querejeta, J., Schlaeppi, K., Lopez-Garcia, A., et al., Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition, New. Phytol., 2021, vol. 232, pp.1399–1413. https://doi.org/10.1111/nph.17661

    Article  CAS  Google Scholar 

  42. Pailler, A., Vennetier, M., Torre, F., Ripert, C., and Guiral, D., Forest soil microbial functional patterns and response to a drought and warming event: Key role of climate-plant-soil interactions at a regional scale, Soil Biol. Biochem., 2014, vol. 70, pp. 1–4. https://doi.org/10.1016/j.soilbio.2013.12.003

    Article  CAS  Google Scholar 

  43. Takriti, M., Wild, B., Schnecker, J., et al., Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect, Soil Biol. Biochem., 2018, vol. 121, pp. 212–220. https://doi.org/10.1016/j.soilbio.2018.02.022

    Article  CAS  Google Scholar 

  44. Naylor, D., Sadler, N., Bhattacharjee, A., et al., Soil microbiomes under climate change and implications for carbon cycling, Annu. Rev. Environ. Resour., 2020, vol. 45, pp. 29–59. https://doi.org/10.1146/annurev-environ-012320-082720

    Article  Google Scholar 

  45. Chen, X.M., Zhang, D.Q., Liang, G.H., et al., Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China, J. Plant Ecol., 2016, vol. 9, pp. 10–19. https://doi.org/10.1093/jpe/rtv027

    Article  Google Scholar 

  46. Zhao, C.C., Miao, Y., Yu, C.D., et al., Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe, Sci. Rep., 2016, vol. 6, p. 24317. https://doi.org/10.1038/srep24317

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Bouskill, N. J., Wood, T.E., Baran, R., Hao, Z., et al., Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition, Front. Microbiol., 2016, vol. 7, p. 323. https://doi.org/10.3389/fmicb.2016.00323

    PubMed  PubMed Central  Google Scholar 

  48. Zhang, H.Z., Shi, L.L., Lu, H.B., et al., Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest, Sci. Total Environ., 2020, vol. 732, p. 139295. https://doi.org/10.1016/j.scitotenv.2020.139295

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Zhou, Z.H., Wang, C.K., and Luo, Y.Q., Response of soil microbial communities to altered precipitation: A global synthesis, Global Ecol. Biogeogr., 2018, vol. 27, pp. 1121–1136. https://doi.org/10.1111/geb.12761

    Article  Google Scholar 

  50. Zhang, Q.Y., Shao, M.A., Jia, X.X., and Wei, X.R., Changes in soil physical and chemical properties after short drought stress in semi-humid forests, Geoderma, 2019, vol. 338, pp. 170–177. https://doi.org/10.1016/j.geoderma.2018.11.051

    Article  CAS  ADS  Google Scholar 

  51. Chen, X.L. and Chen, H.Y.H., Plant diversity loss reduces soil respiration across terrestrial ecosystems, Global Change Biol., 2019, vol. 25, pp. 1482–1492. https://doi.org/10.1111/gcb.14567

    Article  ADS  Google Scholar 

  52. Fuchslueger, L., Wild, B., Mooshammer, M., et al., Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands, Soil Biol. Biochem., 2019, vol. 135, pp. 144–153. https://doi.org/10.1016/j.soilbio.2019.05.002

    Article  CAS  Google Scholar 

  53. Barba, J., Lloret, F., Poyatos, R., et al., Multi-temporal influence of vegetation on soil respiration in a drought-affected forest, iForest, 2018, vol. 11, pp. 189–198. https://doi.org/10.3832/ifor2448-011

    Article  Google Scholar 

  54. Bastida, F., Torres, I.F., Andres-Abellan, M., et al., Differential sensitivity of total and active soil microbial communities to drought and forest management, Global Change Biol., 2018, vol. 24, pp. 552–552. https://doi.org/10.1111/gcb.13953

    Article  Google Scholar 

  55. Terzaghi, E., Raspa, G., Zanardini, E., et al., Life cycle exposure of plants considerably affects root uptake of PCBs: Role of growth strategies and dissolved/particulate organic carbon variability, J. Hazard. Mater., 2022, vol. 421, p. 126826. https://doi.org/10.1016/j.jhazmat.2021.126826

    Article  CAS  PubMed  Google Scholar 

  56. Jaman, M.S., Wu, H.H., Yu, Q., et al., Contrasting responses of plant above and belowground biomass carbon pools to extreme drought in six grasslands spanning an aridity gradient, Plant Soil., 2022, vol. 473, pp. 167–180. https://doi.org/10.1007/s11104-021-05258-4

    Article  CAS  Google Scholar 

  57. Kaiser K. and Guggenberger G., The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils, Org. Geochem., 2000, vol. 31, pp. 711–725. https://doi.org/10.1016/s0146-6380(00)00046-2

    Article  CAS  ADS  Google Scholar 

  58. Si, Y.T., Xiong, L., Chen, Y.M., et al., Contribution of the vertical movement of dissolved organic carbon to carbon allocation in two distinct soil types under Castanopsis fargesii Franch. and C. carlesii (Hemsl.) Hayata forests, Ann. For. Sci., 2018, vol. 75, p. 79. https://doi.org/10.1007/s13595-018-0756-0

    Article  Google Scholar 

  59. Ibrahim, M.M., Zhang, H.X., Guo, L.M., et al., Biochar interaction with chemical fertilizer regulates soil organic carbon mineralization and the abundance of key C-cycling-related bacteria in rhizosphere soil, Eur. J. Soil Biol., 2021, vol. 106, p. 103350. https://doi.org/10.1016/j.ejsobi.2021.103350

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Xin Deng, Gu Han and Lele Li for their assistance in the field and laboratory analyses. We are also grateful to the two anonymous reviewers for their insightful comments and suggestions on the manuscript.

Funding

This work was supported by the National Science Foundation of China (Grant no. 42172338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxue Liu.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng Jiang, He, S., Xiao, L. et al. Effects of Drought on Dissolved Organic Carbon Content in Grassland and Forest Soils. Russ J Ecol 54, 516–525 (2023). https://doi.org/10.1134/S1067413623060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413623060073

Keywords:

Navigation