Skip to main content
Log in

The Response of the Invertebrate Communities of Steppe and Floodplain Meadows to Emissions from the Karabash Copper Smelter

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Based on the materials of 2014, the response of invertebrate communities in floodplain and steppe meadows to emissions from the Karabash copper smelter was assessed (the main pollutants are SO2 and heavy metals). Near the smelter, in the phytocenoses of meadows of both types, the phytomass of herbage decreases (2–7 times) and the proportion of graminoids increases (from 36–45 to 53–85%). The abundance of invertebrates in the meadows of both types varies similarly: the total abundance decreases (by a factor of 1.4–2.9), while the abundance of all trophic and most large taxonomic groups does not change. The taxonomic structure of invertebrates in floodplain meadows changed only in the impact zone, while in steppe meadows, already in the buffer zone. This result partially confirms the hypothesis put forward that in the communities of floodplain meadows, the reaction to pollution is less pronounced than in steppe meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Chernov, Yu.I. and Rudenskaya, L.V., The invertebrate complex dwelling in grass as a stratum of animal population, Zool. Zh., 1975, vol. 54, no. 6, pp. 884–894.

    Google Scholar 

  2. Nesterkov, A.V. and Vorobeichik, E.L., Changes in the structure of chortobiont invertebrate community exposed to emissions from a copper smelter, Russ. J. Ecol., 2009, vol. 40, no. 4, pp. 286–296.

    Article  CAS  Google Scholar 

  3. Zolotarev, M.P. and Nesterkov, A.V., Arachnids (Aranei, Opiliones) in meadows: Response to pollution with emissions from the Middle Ural Copper Smelter, Russ. J. Ecol., 2015, vol. 46. no. 1, pp. 81–88.

    Article  CAS  Google Scholar 

  4. Nesterkov, A.V., Recovery signs in grass-stand invertebrate communities after a decrease in copper-smelting emissions, Russ. J. Ecol., 2022, vol. 53, no. 6, pp. 553–564.

    Article  CAS  Google Scholar 

  5. Hunter, B.A., Johnson, M.S., and Thompson, D.J., Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. II. Invertebrates, J. Appl. Ecol., 1987, vol. 24, no. 2, pp. 587–599.

    Article  CAS  Google Scholar 

  6. Perner, J., Voigt, W., Bährmann, R., et al., Responses of arthropods to plant diversity, Ecography, 2003, vol. 26, no. 6, pp. 788–800.

    Article  ADS  Google Scholar 

  7. Conclusion of the expert commission on consideration of materials assessing the degree of environmental distress in the environment and the state of public health and the draft Federal Target Program of Priority Urgent Measures for 1996–2000 to remove the territory of the city of Karabash, Chelyabinsk oblast, from the state of environmental disaster and improve the health of the population. https://docs.cntd.ru/document/9035640.

  8. Lightfoot, D.C. and Whitford, W.G., Productivity of creosotebush foliage and associated canopy arthropods along a desert roadside, Am. Midl. Nat., 1991, vol. 125, pp. 310–322.

    Article  Google Scholar 

  9. D’Odorico, P. and Bhattachan, A., Hydrologic variability in dryland regions, Philos. Trans. R. Soc., B, 2012, vol. 367, pp. 3145–3157.

  10. Schowalter, T.D., Lightfoot, D., and Whitford, W., Diversity of arthropod responses to host-plant water stress in a desert ecosystem in southern New Mexico, Am. Midl. Nat., 1999, vol. 142, pp. 281–290.

    Article  Google Scholar 

  11. Zhu, H., Wang, D.L., Wang, L., et al., Effects of altered precipitation on insect community composition and structure in a meadow steppe, Ecol. Entomol., 2014, vol. 39, no. 4, pp. 453–461.

    Article  Google Scholar 

  12. Wenninger, E.J. and Inouye, R.S., Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem, J. Arid Environ., 2008, vol. 72, no. 1, pp. 24–33.

    Article  ADS  Google Scholar 

  13. Warrington, S. and Whittaker, J.B., Interactions between Sitka spruce, the green spruce aphid, sulphur-dioxide pollution and drought, Environ. Pollut., 1990, vol. 65, no. 4, pp. 363–370.

    Article  CAS  PubMed  Google Scholar 

  14. Burkhardt, J. and Pariyar, S., Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.), Environ. Pollut., 2014, vol. 184, pp. 659–667.

    Article  CAS  PubMed  Google Scholar 

  15. Sediment Dynamics and Pollutant Mobility in Rivers, Westrich, B. and Förstner, U., Eds., Berlin: Springer, 2007.

  16. Sivakumar, S., Effects of metals on earthworm life cycles, Environ. Monit. Assess., 2015, vol. 187, no. 8, pp. 1–16.

    Article  Google Scholar 

  17. Klok, C. and Kraak, M.H.S., Living in highly dynamic polluted river floodplains, do contaminants contribute to population and community effects?, Sci. Total Environ., 2008, vol. 406, no. 3, pp. 455–461.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Schipper, A.M., Hendriks, A.J., Ragas, A.M.J., et al., Disentangling and ranking the influences of multiple environmental factors on plant and soil-dwelling arthropod assemblages in a river Rhine floodplain area, Hydrobiologia, 2014, vol. 729, no. 1, pp. 133–142.

    Article  CAS  Google Scholar 

  19. Purvis, O.W., Chimonides, P.J., Jones, G.C., et al., Lichen biomonitoring near Karabash Smelter Town, Ural Mountains, Russia, one of the most polluted areas in the world, Proc. R. Soc., B, 2003, vol. 271, pp. 221–226.

    Article  Google Scholar 

  20. Smorkalov, I.A. and Vorobeichik, E.L., Does long-term industrial pollution affect the fine and coarse root mass in forests?, Water, Air, Soil Pollut., 2022, vol. 233, no. 2, p. 55.

    Article  CAS  ADS  Google Scholar 

  21. Nesterkov, A.V., Experience of using a biocenometer with a vacuum sample collector to count invertebrates in grass stand, Evraziat. Entomol. Zh., 2014, vol. 13, no. 3, pp. 244–245.

    Google Scholar 

  22. R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/.

  23. Fox, J. and Weisberg, S., An {R} companion to applied regression. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

  24. Tremblay, A. and Ransijn, J., LMERConvenienceFunctions: Model selection and post-hoc analysis for (G)LMER models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions.

  25. Hothorn, T., Bretz, F., and Westfall, P., Simultaneous inference in general parametric models, Biom J., 2008, vol. 50, no. 3, pp. 346–363.

    Article  MathSciNet  PubMed  Google Scholar 

  26. Pustejovsky, J.E., Chen, M., and Swan, D.M., SingleCaseES: A calculator for single-case effect sizes. R package version 0.6.1. https://CRAN.R-project.org/package=SingleCaseES.

  27. Begueria, S. and Vicente-Serrano, S.M., SPEI: Calculation of the standardised precipitation-evapotranspiration index. R package version 1.7. https://CRAN.R-project.org/package=SPEI.

  28. Weather schedule. Information about the weather conditions of the Chelyabinsk weather station (station synoptic index - 28630). https://www.rp5.ru.

  29. Wickham, H., Ggplot2: Elegant Graphics for Data Analysis, New York: Springer, 2016.

    Book  Google Scholar 

  30. Suzuki, R., Terada, Y., and Shimodaira, H., pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 2.2-0. https://CRAN.R-project.org/package=pvclust.

  31. Zvereva, E. and Kozlov, M., Changes in the abundance of vascular plants under the impact of industrial air pollution, Water, Air, Soil Pollut., 2011, pp. 1–11.

  32. Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (Ecological Rationing of Anthropogenic Pollution of Terrestrial Ecosystems (Local Level)), Yekaterinburg: Nauka, 1994.

  33. Vorobeichik, E.L., Trubina, M.R., Khantemirova, E.V., et al., Long-term dynamic of forest vegetation after reduction of copper smelter emissions, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 498–507.

    Article  CAS  Google Scholar 

  34. Hunter, B.A., Johnson, M.S., and Thompson, D.J., Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and vegetation contamination, J. Appl. Ecol., 1987, vol. 24, no. 2, pp. 573–586.

    Article  CAS  Google Scholar 

  35. Zvereva, E. and Kozlov, M., Responses of terrestrial arthropods to air pollution, Environ. Sci. Pollut. Res., 2010, vol. 17, no. 2, pp. 297–311.

    Article  CAS  Google Scholar 

  36. Vorobeichik, E.L., Ermakov, A.I., Zolotarev, M.P., et al., Changes in diversity of soil macrofauna in industrial pollution gradient, Russ. Entomol. Zh., 2012, no. 21, pp. 203–218.

  37. Vorobeichik, E.L., Ermakov, A.I., and Grebennikov, M.E., Initial stages of recovery of soil macrofauna communities after reduction of emissions from a copper smelter, Russ. J. Ecol., 2019, vol. 50, no. 2, pp. 146–160.

    Article  CAS  Google Scholar 

  38. Ermakov, A.I., Changes in the assemblage of necrophilous invertebrates under the effect of pollution with emissions from the Middle Ural Copper Smelter, Russ. J. Ecol., 2013, vol. 44, no. 6, pp. 515–522.

    Article  CAS  Google Scholar 

  39. Bel'skaya, E.A. and Zinov’ev, E.V., Structure of complexes of ground beetles (Coleoptera, Carabidae) in natural and anthropogenically disturbed forest ecosystems of the southwest of Sverdlovsk oblast, Sib. Ekol. Zh., 2007, no. 4, pp. 533–543.

  40. Zolotarev, M.P., Changes in the taxonomic structure of herpetobiont arachnids along the gradient of pollution with emissions from a copper smelter, Russ. J. Ecol., 2009, vol. 40, no. 5, pp. 356–360.

    Article  Google Scholar 

  41. Belskaya, E., Dynamics of trophic activity of leaf-eating insects on birch during reduction of emissions from the Middle Ural Copper Smelter, Russ. J. Ecol., 2018, vol. 49, no. 1, pp. 87–92.

    Article  Google Scholar 

  42. Haddad, N.M., Crutsinger, G.M., Gross, K., et al., Plant species loss decreases arthropod diversity and shifts trophic structure, Ecol. Lett., 2009, vol. 12, no. 10, pp. 1029–1039.

    Article  PubMed  Google Scholar 

  43. Schaffers, A.P., Raemakers, I.P., Sýkora, K.V., et al., Arthropod assemblages are best predicted by plant species composition, Ecology, 2008, vol. 89, no. 3, pp. 782–794.

    Article  PubMed  Google Scholar 

  44. Dulya, O.V., Mikryukov, V.S., and Hlystov, I.A., Interspecific differences in determinants of plant distribution in industrially polluted areas, Plant Soil, 2015, vol. 394, nos. 1–2, pp. 329–342.

    Article  CAS  Google Scholar 

  45. Dulya, O.V., Mikryukov, V.S., and Vorobeichik, E.L., Strategies of adaptation to heavy metal pollution in Deschampsia caespitosa and Lychnis flos-cuculi: Analysis based on dose-response relationship, Russ. J. Ecol., 2013, vol. 44, no. 4, pp. 271–281.

    Article  CAS  Google Scholar 

  46. Dahmani-Muller, H., van Oort, F., Gelie, B., et al., Strategies of heavy metal uptake by three plant species growing near a metal smelter, Environ. Pollut., 2000, vol. 109, no. 2, pp. 231–238.

    Article  CAS  PubMed  Google Scholar 

  47. Naiman, R. and Decamps, H., The ecology of interfaces, Annu. Rev. Ecol. Syst., 1997, vol. 28, pp. 621–658.

    Article  Google Scholar 

  48. Wang, S., Wei, M., Cheng, H., et al., Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress, Ecotoxicol. Environ. Saf., 2020, vol. 205, p. 111160.

    Article  CAS  PubMed  Google Scholar 

  49. Jhee, E.M., Boyd, R.S., and Eubanks, M.D., Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae), New Phytol., 2005, vol. 168, no. 2, pp. 331–343.

    Article  CAS  PubMed  Google Scholar 

  50. Lindqvist, L., Block, M., and Tjälve, H., Distribution and excretion of Cd, Hg, methyl-Hg and Zn in the predatory beetle Pterostichus niger (Coleoptera: Carabidae), Environ. Toxicol. Chem., 1995, vol. 14, pp. 1195–1201.

    CAS  Google Scholar 

  51. Vickerman, D.B. and Trumble, J.T., Biotransfer of selenium, Ecotoxicology, 2003, vol. 12, no. 6, pp. 497–504.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.G. Pishchulin (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences) for providing meteorological data, P.V. Kondratkov (Ural Federal University), for determining the phytomass of grass stand fractions, and E.L. Vorobeichik and M.R. Trubina (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences) for valuable advice during the discussion of the manuscript.

Funding

The study was carried out as part of NIOKTR 122021000076-9 within the framework of the state task of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nesterkov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The collection and analysis of invertebrates were carried out with the approval of the Bioethics Commission of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences (Protocol No. 13, dated November 1, 2022).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterkov, A.V., Nesterkova, D.V. The Response of the Invertebrate Communities of Steppe and Floodplain Meadows to Emissions from the Karabash Copper Smelter. Russ J Ecol 54, 542–552 (2023). https://doi.org/10.1134/S106741362306005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106741362306005X

Keywords:

Navigation