Skip to main content
Log in

Temperature Effect on CO2 Emission by Two Xylotrophic Fungi and by Wood Debris

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Data characterizing the temperature dependence of the growth and CO2 emission of two species of xylotrophic fungi (D. confragosa and D. tricolor) during their development on wort–agar and wood debris in a laboratory experiment are presented. Currently available estimates of the temperature dynamics of CO2 emission by wood debris do not fully take into account the relationship between temperature, CO2 emission, growth, and respiratory activity of fungi. In the range of 10–30°C, both linear growth and CO2 emission activity of fungal mycelium are positively and linearly related to temperature (Spearman’s correlation coefficient, 0.94–0.97) to the same extent (Q10 of growth, 2.2; Q10 of respiration, 2.1), and CO2 emission is directly proportional to mycelium area and its specific emission activity. As a result, the temperature effect on CO2 emission is a derivative of two equally temperature dependent factors: growth and specific emission activity of mycelium. It is equal to the product of the effects of each of the factors separately and is described by an exponential equation, which reflects the non-additive, possibly synergistic nature of the temperature enhancement of CO2 emission in the range from 20 to 30°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Christensen, J.H., Hewitson, B., Busuioc, A., et al., Regional climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., Qin, D., and Manning, M., Eds., New York: Cambridge Univ. Press, 2007, pp. 848–940.

    Google Scholar 

  2. Gruza, G.V. and Ran’kova, E.Ya., Nablyudaemye izmeneniya sovremennogo klimata, Materialy Soveta-seminara pri prezidente Rossiiskoi Akademii Nauk “Vozmozhnosti predotvrashcheniya izmeneniya klimata i ego negativnykh posledstvii: problema Kiotskogo protokola” (Proc. Council-Seminar under the President of the Russian Academy of Sciences “Opportunities to Prevent Climate Change and its Negative Consequences: The Problem of the Kyoto Protocol”), Izrael’, Yu.A., Ed., Moscow: Nauka, 2006, pp. 60–74.

  3. Zavarzin, G.A., Carbon balance of Russia, Materialy Soveta-seminara pri prezidente Rossiiskoi Akademii Nauk “Vozmozhnosti predotvrashcheniya izmeneniya klimata i ego negativnykh posledstvii: problema Kiotskogo protokola” (Proc. Council-Seminar under the President of the Russian Academy of Sciences “Opportunities to Prevent Climate Change and its Negative Consequences: The Problem of the Kyoto Protocol”), Izrael’, Yu.A., Ed., Moscow: Nauka, 2006, pp. 134–151.

  4. Kudeyarov, V.N., Zavarzin, G.A., Blagodatskii, S.A., et al., Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Carbon Pools and Fluxes in Russian Terrestrial Ecosystems), Moscow: Nauka, 2007.

  5. Mukhin, V.A., Diyarova, D.K., Gitarskiy, M.L., et al., Carbon and oxygen gas exchange in woody debris: The process and climate-related drivers, Forests, 2021, vol. 12, no. 9, p. 1156. https://doi.org/10.3390/f12091156

    Article  Google Scholar 

  6. Kirschbaum, M.U.F., The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage, Soil Biol. Biochem., 1995, vol. 27, pp. 753–760. https://doi.org/10.1016/0038-0717(94)00242-S

    Article  CAS  Google Scholar 

  7. Chen, H., Harmon, M.E., Griffiths, R.P., et al., Effects of temperature and moisture on carbon respired from decomposing woody roots, For. Ecol. Manage., 2000, vol. 138, pp. 51–64. https://doi.org/10.1016/S0378-1127(00)00411-4

    Article  Google Scholar 

  8. Mackensen, J., Bauhus, J., and Webber, E., Decomposition rates of coarse woody debris: A review with particular emphasis on Australian tree species, Aust. J. Bot., 2003, vol. 51, pp. 27–37. https://doi.org/10.1071/BT02014

    Article  Google Scholar 

  9. Gough, C.M., Vogel, C.S., Kazanski, C., et al., Coarse woody debris and the carbon balance of a north temperate forest, For. Ecol. Manage., 2007, vol. 244, pp. 60–67. https://doi.org/10.1016/j.foreco.2007.03.039

    Article  Google Scholar 

  10. Wu, J., Zhang, X., Wang, H., et al., Respiration of downed logs in an old-growth temperate forest in north-eastern China, Scand. J. For. Res., 2010, vol. 25, no. 6, pp. 500–506. https://doi.org/10.1080/02827581.2010.524166

    Article  Google Scholar 

  11. Olajuyigbe, S., Tobin, B., and Nieuwenhuis, M., Temperature and moisture effects on respiration rate of decomposing logs in a Sitka spruce plantation in Ireland, Forestry, 2012, vol. 85, pp. 485–496. https://doi.org/10.1093/forestry/cps045

    Article  Google Scholar 

  12. Herrmann, S. and Bauhus, J., Effects of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species, Scand. J. For. Res., 2012, vol. 28, no. 4, pp. 346–357. https://doi.org/10.1080/02827581.2012.747622

    Article  Google Scholar 

  13. Tláskal, V., Brabcová, V., Větrovský, T., et al., Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition, mSystems, 2021, vol. 6, no. 1, p. e01078-20. https://doi.org/10.1128/mSystems.01078-20

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barker, J.S., Decomposition of Douglas-fir coarse woody debris in response to differing moisture content and initial heterotrophic colonization, For. Ecol. Manage., 2008, vol. 255, pp. 598–604. https://doi.org/10.1016/j.foreco.2007.09.029

    Article  Google Scholar 

  15. A’Bear, A.D., Murray, W., Webb, R., et al., Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi, PLoS One, 2013, vol. 8, no. 10, p. e77610. https://doi.org/10.1371/journal.pone.0077610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forrester, J.A., Mladenoff, D.J., D’Amato, A.W., et al., Temporal trends and sources of variation in carbon flux from coarse woody debris in experimental forest canopy openings, Oecologia, 2015, vol. 179, pp. 889–900. https://doi.org/10.1007/s00442-015-3393-4

    Article  CAS  PubMed  Google Scholar 

  17. Carlsson, F., Edman, M., and Jonsson, B.G., Increased CO2 evolution caused by heat treatment in wood-decaying fungi, Mycol. Progr., 2017, vol. 16, pp. 513–519. https://doi.org/10.1007/s11557-017-1281-5

    Article  Google Scholar 

  18. Venugopal, P., Junninen, K., Linnakoski, R., et al., Climate and wood quality have decayer-specific effects on fungal wood decomposition, For. Ecol. Manage., 2016, vol. 360, pp. 341–351. https://doi.org/10.1016/j.foreco.2015.10.023

    Article  Google Scholar 

  19. Rubenstein, M.A., Crowther, T.W., Maynard, D.S., et al., Decoupling direct and indirect effects of temperature on decomposition, Soil Biol. Biochem., 2017, vol. 112, pp. 110–116. https://doi.org/10.1016/j.soilbio.2017.05.005

    Article  CAS  Google Scholar 

  20. Edman, M., Hagos, S., and Carlsson, F., Warming effects on wood decomposition depend on fungal assembly history, J. Ecol., 2021, vol. 109, pp. 1919–1930. https://doi.org/10.1111/1365-2745.13617

    Article  CAS  Google Scholar 

  21. Ryvarden, L. and Gilbertson, R.L., European Polypores. Pt. 1 (Abortiporus-Lindtneria), Oslo: Fungiflora, 1993.

    Google Scholar 

  22. The MycoBank engine and related databases. http://www.mycobank.org. Cited August 1, 2022.

  23. Dudka, I.A., Vasser, S.P., Ellanskaya, I.A., et al., Metody eksperimental’noi mikologii: Spravochnik (Methods of Experimental Mycology: Handbook), Bilai, V.I., Ed., Kiev: Naukova Dumka, 1982.

    Google Scholar 

  24. Zavarzin, G.A. and Zavarzina, A.G., Xylotrophs and mycophilic bacteria in the formation of dystrophic waters, Microbiology, 2009, vol. 78, no. 5, pp. 523–534.

  25. Humphrey, C.J. and Siggers, P.V., Temperature relations of wood-destroying fungi, J. Agric. Res., 1933, vol. 47, no. 12, pp. 997–1008.

    Google Scholar 

  26. Jomura, M., Yoshida, R., Michalčíková, L., et al., Factors controlling dead wood decomposition in an old growth temperate forest in Central Europe, J. Fungi, 2022, vol. 8, p. 673. https://doi.org/10.3390/jof8070673

    Article  CAS  Google Scholar 

  27. Mukhin, V.A., Voronin, P.Yu., and Sukhareva, A.V., Temperature scale of CO2 emission activity of polypore fungi, VII Mezhdunarodnaya konferentsiya “Problemy lesnoi fitopatologii i mikologii” (Proc. VII Int. Conf. “Problems of Forest Phytopathology and Mycology”), Perevedentseva, L.G., Storozhenko, V.G., and Egoshina, T.L., Eds., Perm, 2009, pp. 138–141.

  28. Mukhin, V.A., Voronin, P.Y., Sukhareva, A.V., et al., Wood decomposition by fungi in the boreal-humid forest zone under the conditions of climate warming, Dokl. Biol. Sci., 2010, vol. 431, pp. 110–112.https://doi.org/10.1134/S0012496610020110

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. E.L. Vorobeichik for constructive discussion of the study results.

Funding

The study was supported by the Russian Science Foundation (project no. 22-24-00970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Diyarova.

Ethics declarations

The authors confirm that there is no conflicts of interest.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diyarova, D.K., Vladykina, V.D. & Mukhin, V.A. Temperature Effect on CO2 Emission by Two Xylotrophic Fungi and by Wood Debris. Russ J Ecol 54, 213–220 (2023). https://doi.org/10.1134/S1067413623030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413623030025

Keywords:

Navigation